메뉴 건너뛰기




Volumn 29, Issue 3, 2008, Pages 291-310

Learning and approximation by Gaussians on Riemannian manifolds

Author keywords

Approximation; Gaussian kernels; Learning theory; Multi kernel least square regularization scheme; Reproducing kernel Hilbert spaces; Riemannian manifolds

Indexed keywords


EID: 55049127622     PISSN: 10197168     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10444-007-9049-0     Document Type: Article
Times cited : (42)

References (27)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn 1950 Theory of reproducing kernels Trans. Amer. Math. Soc. 68 337 404
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 26944439046 scopus 로고    scopus 로고
    • Towards a theoretical foundation for Laplacian-based manifold methods
    • Auer, P., Meir, R. (eds.)
    • Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold methods. In: Auer, P., Meir, R. (eds.) COLT 2005, pp. 486-500 (2005)
    • (2005) COLT 2005 , pp. 486-500
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • M. Belkin P. Niyogi 2004 Semi-supervised learning on Riemannian manifolds Mach. Learn. 56 209 239
    • (2004) Mach. Learn. , vol.56 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin P. Niyogi 2003 Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 1373 1396
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 8
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: Error analysis
    • D.R. Chen Q. Wu Y. Ying D.X. Zhou 2004 Support vector machine soft margin classifiers: error analysis J. Mach. Learn. Res. 5 1143 1175
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1143-1175
    • Chen, D.R.1    Wu, Q.2    Ying, Y.3    Zhou, D.X.4
  • 10
    • 24944432318 scopus 로고    scopus 로고
    • Model selection for regularized least-squares algorithm in learning theory
    • E. De Vito A. Caponnetto L. Rosasco 2005 Model selection for regularized least-squares algorithm in learning theory Found. Comput. Math. 5 59 85
    • (2005) Found. Comput. Math. , vol.5 , pp. 59-85
    • De Vito, E.1    Caponnetto, A.2    Rosasco, L.3
  • 12
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    • D. Donoho C. Grimes 2003 Hessian eigenmaps: locally linear embedding techniques for high-dimensional data Proc. Natl. Acad. Sci. USA 100 5591 5596
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 5591-5596
    • Donoho, D.1    Grimes, C.2
  • 13
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and suport vector machines
    • T. Evgeniou M. Pontil T. Poggio 2000 Regularization networks and suport vector machines Adv. Comput. Math. 13 1 50
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 19
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • S. Smale D.X. Zhou 2003 Estimating the approximation error in learning theory Anal. Appl. 1 17 41
    • (2003) Anal. Appl. , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.X.2
  • 20
    • 34547455409 scopus 로고    scopus 로고
    • Learning theory estimates via integral operators and their applications
    • doi: 10.1007/s00365-006-0659-y
    • Smale, S., Zhou, D.X.: Learning theory estimates via integral operators and their applications. Constr. Approx. (2007) doi: 10.1007/s00365-006-0659-y
    • (2007) Constr. Approx.
    • Smale, S.1    Zhou, D.X.2
  • 22
    • 33846804061 scopus 로고    scopus 로고
    • Multi-kernel regularized classifiers
    • Q. Wu Y. Ying D.X. Zhou 2007 Multi-kernel regularized classifiers J. Complexity 23 108 134
    • (2007) J. Complexity , vol.23 , pp. 108-134
    • Wu, Q.1    Ying, Y.2    Zhou, D.X.3
  • 23
    • 17444402055 scopus 로고    scopus 로고
    • SVM soft margin classifiers: Linear programming versus quadratic programming
    • Q. Wu D.X. Zhou 2005 SVM soft margin classifiers: linear programming versus quadratic programming Neural Comput. 17 1160 1187
    • (2005) Neural Comput. , vol.17 , pp. 1160-1187
    • Wu, Q.1    Zhou, D.X.2
  • 24
    • 34547603945 scopus 로고    scopus 로고
    • Fully online classification by regularization
    • doi: 10.1016/j.acha.2006.12.001
    • Ye, G.B., Zhou, D.X.: Fully online classification by regularization. Appl. Comput. Harmon. Anal. (2007) doi: 10.1016/j.acha.2006.12.001
    • (2007) Appl. Comput. Harmon. Anal.
    • Ye, G.B.1    Zhou, D.X.2
  • 25
    • 33847115868 scopus 로고    scopus 로고
    • Learnability of Gaussians with flexible variances
    • Y. Ying D.X. Zhou 2007 Learnability of Gaussians with flexible variances J. Mach. Learn. Res. 8 249 276
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 249-276
    • Ying, Y.1    Zhou, D.X.2
  • 26
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • D.X. Zhou 2002 The covering number in learning theory J. Complexity 18 739 767
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 27
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • D.X. Zhou 2003 Capacity of reproducing kernel spaces in learning theory IEEE Trans. Inform Theory 49 1743 1752
    • (2003) IEEE Trans. Inform Theory , vol.49 , pp. 1743-1752
    • Zhou, D.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.