-
1
-
-
11244309014
-
Proteolysis: From the lysosome to ubiquitin and the proteasome
-
Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 6:79-87.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 79-87
-
-
Ciechanover, A.1
-
2
-
-
26944475263
-
The lysosome turns fifty
-
de Duve C. The lysosome turns fifty. Nat Cell Biol 2005; 7:847-849.
-
(2005)
Nat Cell Biol
, vol.7
, pp. 847-849
-
-
De Duve, C.1
-
3
-
-
0023065242
-
Intracellular protein catabolism and its control during nutrient deprivation and supply
-
Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987; 7:539-564.
-
(1987)
Annu Rev Nutr
, vol.7
, pp. 539-564
-
-
Mortimore, G.E.1
Poso, A.R.2
-
4
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432:1032-1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
-
5
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005; 169:425-434.
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
-
6
-
-
1842583789
-
Development by self-digestion: Molecular mechanisms and biological functions of autophagy
-
Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6:463-477.
-
(2004)
Dev Cell
, vol.6
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
7
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
•]). The mice developed neurodegenaration even in the absence of a disease-associated protein, highlighting the importance of the basal clearance of cytosol by the LAS.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
-
9
-
-
8344247016
-
Autophagy defends cells against invading group a Streptococcus
-
Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus. Science 2004; 306:1037-1040.
-
(2004)
Science
, vol.306
, pp. 1037-1040
-
-
Nakagawa, I.1
Amano, A.2
Mizushima, N.3
-
10
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119:753-766.
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
-
11
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
Ogawa M, Yoshimori T, Suzuki T, et al. Escape of intracellular Shigella from autophagy. Science 2005; 307:727-731. To be able to spread efficiently, an invasive pathogen Shigella flexneri was shown to suppress the host's autophagy. The VirG protein of Shigella happens to interact with host's ATG5, triggering autophagy. Another protein of the bacterium, the secreted IcsB, was shown to shield the VirG from the interaction with the ATG5.
-
(2005)
Science
, vol.307
, pp. 727-731
-
-
Ogawa, M.1
Yoshimori, T.2
Suzuki, T.3
-
12
-
-
12844275079
-
Endogenous MHC class II processing of a viral nuclear antigen after autophagy
-
Paludan C, Schmid D, Landthaler M, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005; 307:593-596.
-
(2005)
Science
, vol.307
, pp. 593-596
-
-
Paludan, C.1
Schmid, D.2
Landthaler, M.3
-
13
-
-
20344361954
-
Autophagy promotes MHC class II presentation of peptides from intracellular source proteins
-
Dengjel J, Schoor O, Fischer R, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 2005; 102:7922-7927. Proteomic approach was used to analyze peptides liganded to MHC class II molecules. An enrichment of peptides from intracellular and lysosomal source proteins after autophagy had been induced argues for the relevance of the LAS in shaping adaptive immune responses.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 7922-7927
-
-
Dengjel, J.1
Schoor, O.2
Fischer, R.3
-
14
-
-
19344368318
-
Autophagy regulates programmed cell death during the plant innate immune response
-
Liu Y, Schiff M, Czymmek K, et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005; 121:567-577.
-
(2005)
Cell
, vol.121
, pp. 567-577
-
-
Liu, Y.1
Schiff, M.2
Czymmek, K.3
-
15
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402:672-676.
-
(1999)
Nature
, vol.402
, pp. 672-676
-
-
Liang, X.H.1
Jackson, S.2
Seaman, M.3
-
16
-
-
33744988159
-
Autophagy: Is it cancer's friend or foe?
-
Marx J. Autophagy: is it cancer's friend or foe? Science 2006; 312:1160-1161.
-
(2006)
Science
, vol.312
, pp. 1160-1161
-
-
Marx, J.1
-
17
-
-
1542344435
-
Proteasomes and their kin: Proteases in the machine age
-
Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 2004; 5:177-187.
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, pp. 177-187
-
-
Pickart, C.M.1
Cohen, R.E.2
-
18
-
-
0036103598
-
The structure of the mammalian 20S proteasome at 2.75 a resolution
-
Unno M, Mizushima T, Morimoto Y, et al. The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 2002; 10:609-618.
-
(2002)
Structure
, vol.10
, pp. 609-618
-
-
Unno, M.1
Mizushima, T.2
Morimoto, Y.3
-
19
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett DS, Hanna J, Borodovsky A, et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell 2002; 10:495-507.
-
(2002)
Mol Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.S.1
Hanna, J.2
Borodovsky, A.3
-
20
-
-
8844237615
-
Polyubiquitin chains: Polymeric protein signals
-
Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 2004; 8:610-616.
-
(2004)
Curr Opin Chem Biol
, vol.8
, pp. 610-616
-
-
Pickart, C.M.1
Fushman, D.2
-
21
-
-
21744433861
-
Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase
-
Cadwell K, Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 2005; 309:127-130. Membrane-protein ubiquitination on cysteine residues by an E3 ubiquitin ligase, MIR31, of a herpes virus was demonstrated. This extends the range of substrates for the UPS, making obsolete the necessity of containing lysines to qualify as a target for ubiquitination.
-
(2005)
Science
, vol.309
, pp. 127-130
-
-
Cadwell, K.1
Coscoy, L.2
-
22
-
-
33745742269
-
Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology
-
Kirkpatrick DS, Hathaway NA, Hanna J, et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 2006; 8:700-710.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 700-710
-
-
Kirkpatrick, D.S.1
Hathaway, N.A.2
Hanna, J.3
-
23
-
-
25144443718
-
The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle
-
(Nobel lecture)
-
•], the reviews of the founders of the UPS field present thoughtful personal accounts on scientific commitment and the pursuit of new scientific ideas.
-
(2005)
Angew Chem Int Ed Engl
, vol.44
, pp. 5932-5943
-
-
Hershko, A.1
-
24
-
-
25144466132
-
Intracellular protein degradation: From a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting
-
(Nobel lecture)
-
•].
-
(2005)
Angew Chem Int Ed Engl
, vol.44
, pp. 5944-5967
-
-
Ciechanover, A.1
-
27
-
-
0037242017
-
Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I
-
Reits E, Griekspoor A, Neijssen J, et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 2003; 18:97-108.
-
(2003)
Immunity
, vol.18
, pp. 97-108
-
-
Reits, E.1
Griekspoor, A.2
Neijssen, J.3
-
28
-
-
0141750441
-
The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway
-
Kunisawa J, Shastri N. The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway. Mol Cell 2003; 12:565-576.
-
(2003)
Mol Cell
, vol.12
, pp. 565-576
-
-
Kunisawa, J.1
Shastri, N.2
-
29
-
-
33646575879
-
Hsp90alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway
-
Kunisawa J, Shastri N. Hsp90alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 2006; 24:523-534.
-
(2006)
Immunity
, vol.24
, pp. 523-534
-
-
Kunisawa, J.1
Shastri, N.2
-
30
-
-
1842785206
-
A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation
-
Reits E, Neijssen J, Herberts C, et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 2004; 20:495-506.
-
(2004)
Immunity
, vol.20
, pp. 495-506
-
-
Reits, E.1
Neijssen, J.2
Herberts, C.3
-
31
-
-
8744237281
-
Pathway for degradation of peptides generated by proteasomes: A key role for thimet oligopeptidase and other metallopeptidases
-
Saric T, Graef CI, Goldberg AL. Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 2004; 279:46723-46732.
-
(2004)
J Biol Chem
, vol.279
, pp. 46723-46732
-
-
Saric, T.1
Graef, C.I.2
Goldberg, A.L.3
-
32
-
-
33746215297
-
Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation
-
York IA, Bhutani N, Zendzian S, et al. Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. J Immunol 2006; 177:1434-1443.
-
(2006)
J Immunol
, vol.177
, pp. 1434-1443
-
-
York, I.A.1
Bhutani, N.2
Zendzian, S.3
-
33
-
-
0033548055
-
A giant protease with potential to substitute for some functions of the proteasome
-
Geier E, Pfeifer G, Wilm M, et al. A giant protease with potential to substitute for some functions of the proteasome. Science 1999; 283:978-981.
-
(1999)
Science
, vol.283
, pp. 978-981
-
-
Geier, E.1
Pfeifer, G.2
Wilm, M.3
-
34
-
-
0024371802
-
Role of bestatin-sensitive exopeptidases in the intracellular degradation of hepatic proteins
-
Botbol V, Scornik OA. Role of bestatin-sensitive exopeptidases in the intracellular degradation of hepatic proteins. J Biol Chem 1989; 264:13504-13509.
-
(1989)
J Biol Chem
, vol.264
, pp. 13504-13509
-
-
Botbol, V.1
Scornik, O.A.2
-
35
-
-
0000280915
-
Amino-acids in nutrition and growth
-
Osborne TB, Mendel LB. Amino-acids in nutrition and growth. J Biol Chem 1914; 17:325-349.
-
(1914)
J Biol Chem
, vol.17
, pp. 325-349
-
-
Osborne, T.B.1
Mendel, L.B.2
-
36
-
-
0041375470
-
Different approaches to define individual amino acid requirements
-
Pencharz PB, Ball RO. Different approaches to define individual amino acid requirements. Annu Rev Nutr 2003; 23:101-116.
-
(2003)
Annu Rev Nutr
, vol.23
, pp. 101-116
-
-
Pencharz, P.B.1
Ball, R.O.2
-
37
-
-
27644484061
-
Autophagy: Molecular machinery for self-eating
-
Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ 2005; 12 (suppl 2):1542-1552.
-
(2005)
Cell Death Differ
, vol.12
, Issue.SUPPL. 2
, pp. 1542-1552
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
38
-
-
29344464782
-
Protein synthesis upon acute nutrient restriction relies on proteasome function
-
Vabulas RM, Hartl FU. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 2005; 310:1960-1963. The study demonstrates the critical role of cytosolic protein degradation to supply amino acids for protein synthesis. Implications of its results extend into the field of protein quality control, inciting reevaluation of the prevailing view that protein biogenesis is extremely inefficient.
-
(2005)
Science
, vol.310
, pp. 1960-1963
-
-
Vabulas, R.M.1
Hartl, F.U.2
-
39
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15:1101-1111.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
-
40
-
-
11844287006
-
Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors
-
Rechsteiner M, Hill CP. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 2005; 15:27-33.
-
(2005)
Trends Cell Biol
, vol.15
, pp. 27-33
-
-
Rechsteiner, M.1
Hill, C.P.2
-
41
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M, Bajorek M, Kohler A, et al. A gated channel into the proteasome core particle. Nat Struct Biol 2000; 7:1062-1067.
-
(2000)
Nat Struct Biol
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Kohler, A.3
-
42
-
-
0034964524
-
The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release
-
Kohler A, Cascio P, Leggett DS, et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 2001; 7:1143-1152.
-
(2001)
Mol Cell
, vol.7
, pp. 1143-1152
-
-
Kohler, A.1
Cascio, P.2
Leggett, D.S.3
-
43
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby FG, Masters EI, Kramer L, et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000; 408:115-120.
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
Masters, E.I.2
Kramer, L.3
-
44
-
-
13844280355
-
The axial channel of the 20S proteasome opens upon binding of the PA200 activator
-
Ortega J, Heymann JB, Kajava AV, et al. The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J Mol Biol 2005; 346:1221-1227.
-
(2005)
J Mol Biol
, vol.346
, pp. 1221-1227
-
-
Ortega, J.1
Heymann, J.B.2
Kajava, A.V.3
-
45
-
-
0142009674
-
Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions
-
Fuertes G, Martin De Llano JJ, Villarroya A, et al. Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. Biochem J 2003; 375:75-86.
-
(2003)
Biochem J
, vol.375
, pp. 75-86
-
-
Fuertes, G.1
De Martin Llano, J.J.2
Villarroya, A.3
-
46
-
-
31044449824
-
The SRC-3/AIB1 coactivator is degraded in a ubiquitin- And ATP-independent manner by the REGgamma proteasome
-
Li X, Lonard DM, Jung SY, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell 2006; 124:381-392.
-
(2006)
Cell
, vol.124
, pp. 381-392
-
-
Li, X.1
Lonard, D.M.2
Jung, S.Y.3
-
47
-
-
21144450049
-
ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle
-
Babbitt SE, Kiss A, Deffenbaugh AE, et al. ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell 2005; 121:553-565. A coupling between ATP hydrolysis and disassembly of the 26 S proteasome is shown. Demonstrating dissociation of the 20S hydrolytic and 19 S regulatory particles during the catalytic cycle, the study prompts to anticipate regulatory potential behind compositional variations of the proteasome.
-
(2005)
Cell
, vol.121
, pp. 553-565
-
-
Babbitt, S.E.1
Kiss, A.2
Deffenbaugh, A.E.3
-
48
-
-
33845467464
-
The structural biology of ubiquitin-protein ligases
-
Mayer J, Ciechanover A, Rechsteiner M, editors. Weinheim: Wiley-VCH Verlag
-
Zheng N, Pavletich NP. The structural biology of ubiquitin-protein ligases. In: Mayer J, Ciechanover A, Rechsteiner M, editors. Protein degradation. Weinheim: Wiley-VCH Verlag; 2005. pp. 156-189. A detailed analysis of what is currently known from structural studies about the action mechanisms of the important enzyme class, the E3 ubiquitin ligases.
-
(2005)
Protein Degradation
, pp. 156-189
-
-
Zheng, N.1
Pavletich, N.P.2
-
49
-
-
24044547036
-
Regulating the regulators: Control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli
-
Gao M, Karin M. Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol Cell 2005; 19:581-593.
-
(2005)
Mol Cell
, vol.19
, pp. 581-593
-
-
Gao, M.1
Karin, M.2
-
50
-
-
0029006391
-
The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids
-
Wek SA, Zhu S, Wek RC. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 1995; 15:4497-4506.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 4497-4506
-
-
Wek, S.A.1
Zhu, S.2
Wek, R.C.3
-
51
-
-
0033634654
-
Regulated translation initiation controls stress-induced gene expression in mammalian cells
-
Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6:1099-1108.
-
(2000)
Mol Cell
, vol.6
, pp. 1099-1108
-
-
Harding, H.P.1
Novoa, I.2
Zhang, Y.3
-
52
-
-
23844554840
-
Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2
-
Padyana AK, Qiu H, Roll-Mecak A, et al. Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2. J Biol Chem 2005; 280:29289-29299.
-
(2005)
J Biol Chem
, vol.280
, pp. 29289-29299
-
-
Padyana, A.K.1
Qiu, H.2
Roll-Mecak, A.3
-
53
-
-
20144374658
-
Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex
-
•], this reports on the discovery of a connection between the biochemical starvation sensor GCN2 kinase and the behavioral response to nutrient deficiency. Activation of neuronal circuits biasing against imbalanced food are shown to depend on GCN2 kinase.
-
(2005)
Science
, vol.307
, pp. 1776-1778
-
-
Hao, S.1
Sharp, J.W.2
Ross-Inta, C.M.3
-
55
-
-
0034643336
-
Rapid degradation of a large fraction of newly synthesized proteins by proteasomes
-
Schubert U, Anton LC, Gibbs J, et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000; 404:770-774.
-
(2000)
Nature
, vol.404
, pp. 770-774
-
-
Schubert, U.1
Anton, L.C.2
Gibbs, J.3
-
57
-
-
33644872508
-
Characterization of rapidly degraded polypeptides in mammalian cells reveals a novel layer of nascent protein quality control
-
•]. Furthermore, a different approach is used to characterize the short-lived protein fraction by decomposing the pool of labeled proteins into short-lived and long-lived fractions.
-
(2006)
J Biol Chem
, vol.281
, pp. 392-400
-
-
Qian, S.B.1
Princiotta, M.F.2
Bennink, J.R.3
Yewdell, J.W.4
-
58
-
-
0019218158
-
Kinetics of degradation of "short-" and "long-lived" proteins in cultured mammalian cells
-
Wheatley DN, Giddings MR, Inglis MS. Kinetics of degradation of "short-" and "long-lived" proteins in cultured mammalian cells. Cell Biol Int Rep 1980; 4:1081-1090.
-
(1980)
Cell Biol Int Rep
, vol.4
, pp. 1081-1090
-
-
Wheatley, D.N.1
Giddings, M.R.2
Inglis, M.S.3
-
59
-
-
0037401773
-
Role of proteasomes in the degradation of short-lived proteins in human fibroblasts under various growth conditions
-
Fuertes G, Villarroya A, Knecht E. Role of proteasomes in the degradation of short-lived proteins in human fibroblasts under various growth conditions. Int J Biochem Cell Biol 2003; 35:651-664.
-
(2003)
Int J Biochem Cell Biol
, vol.35
, pp. 651-664
-
-
Fuertes, G.1
Villarroya, A.2
Knecht, E.3
-
60
-
-
0035807969
-
Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy
-
Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 2001; 98:14440-14445.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 14440-14445
-
-
Gomes, M.D.1
Lecker, S.H.2
Jagoe, R.T.3
-
61
-
-
0035941020
-
Identification of ubiquitin ligases required for skeletal muscle atrophy
-
Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294:1704-1708.
-
(2001)
Science
, vol.294
, pp. 1704-1708
-
-
Bodine, S.C.1
Latres, E.2
Baumhueter, S.3
-
62
-
-
0347285363
-
Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression
-
Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004; 18:39-51.
-
(2004)
FASEB J
, vol.18
, pp. 39-51
-
-
Lecker, S.H.1
Jagoe, R.T.2
Gilbert, A.3
-
63
-
-
0041706156
-
A proteomics approach to understanding protein ubiquitination
-
Peng J, Schwartz D, Elias JE, et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21:921-926.
-
(2003)
Nat Biotechnol
, vol.21
, pp. 921-926
-
-
Peng, J.1
Schwartz, D.2
Elias, J.E.3
-
64
-
-
27744500428
-
Large-scale analysis of the human ubiquitin-related proteome
-
Matsumoto M, Hatakeyama S, Oyamada K, et al. Large-scale analysis of the human ubiquitin-related proteome. Proteomics 2005; 5:4145-4151. The study demonstrates the potential for proteomic analysis of protein degradation.
-
(2005)
Proteomics
, vol.5
, pp. 4145-4151
-
-
Matsumoto, M.1
Hatakeyama, S.2
Oyamada, K.3
-
66
-
-
0037151122
-
Binding of hydrophobic peptides to several noncatalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings
-
Kisselev AF, Kaganovich D, Goldberg AL. Binding of hydrophobic peptides to several noncatalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J Biol Chem 2002; 277:22260-22270.
-
(2002)
J Biol Chem
, vol.277
, pp. 22260-22270
-
-
Kisselev, A.F.1
Kaganovich, D.2
Goldberg, A.L.3
-
67
-
-
8844285955
-
20S proteasome differentially alters translation of different mRNAs via the cleavage of eIF4F and eIF3
-
Baugh JM, Pilipenko EV. 20S proteasome differentially alters translation of different mRNAs via the cleavage of eIF4F and eIF3. Mol Cell 2004; 16:575-586.
-
(2004)
Mol Cell
, vol.16
, pp. 575-586
-
-
Baugh, J.M.1
Pilipenko, E.V.2
-
68
-
-
27144553119
-
Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response
-
Sorokin AV, Selyutina AA, Skabkin MA, et al. Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response. EMBO J 2005; 24:3602-3612.
-
(2005)
EMBO J
, vol.24
, pp. 3602-3612
-
-
Sorokin, A.V.1
Selyutina, A.A.2
Skabkin, M.A.3
-
69
-
-
13244275245
-
A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73
-
Asher G, Tsvetkov P, Kahana C, Shaul Y. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 2005; 19:316-321. Elucidation of the mechanism of how NQO1 regulates ubiquitin-independent degradation of p53 and p73. NQO1 is suggested to function as a proteasomal gatekeeper.
-
(2005)
Genes Dev
, vol.19
, pp. 316-321
-
-
Asher, G.1
Tsvetkov, P.2
Kahana, C.3
Shaul, Y.4
-
70
-
-
9644272423
-
The ubiquitin system: Pathogenesis of human diseases and drug targeting
-
Ciechanover A, Schwartz AL. The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim Biophys Acta 2004; 1695:3-17.
-
(2004)
Biochim Biophys Acta
, vol.1695
, pp. 3-17
-
-
Ciechanover, A.1
Schwartz, A.L.2
-
71
-
-
0024593537
-
The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis
-
Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 1989; 338:394-401.
-
(1989)
Nature
, vol.338
, pp. 394-401
-
-
Finley, D.1
Bartel, B.2
Varshavsky, A.3
-
72
-
-
33746374438
-
Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E
-
Murata T, Shimotohno K. Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem 2006; 281:20788-20800.
-
(2006)
J Biol Chem
, vol.281
, pp. 20788-20800
-
-
Murata, T.1
Shimotohno, K.2
-
73
-
-
0035109013
-
Translational repression by a novel partner of human poly(A) binding protein, Paip2
-
Khaleghpour K, Svitkin YV, Craig AW, et al. Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol Cell 2001; 7:205-216.
-
(2001)
Mol Cell
, vol.7
, pp. 205-216
-
-
Khaleghpour, K.1
Svitkin, Y.V.2
Craig, A.W.3
-
74
-
-
33745450501
-
A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding
-
Karim MM, Svitkin YV, Kahvejian A, et al. A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding. Proc Natl Acad Sci USA 2006; 103:9494-9499.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 9494-9499
-
-
Karim, M.M.1
Svitkin, Y.V.2
Kahvejian, A.3
-
75
-
-
33646566338
-
Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2
-
Yoshida M, Yoshida K, Kozlov G, et al. Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2. EMBO J 2006; 25:1934-1944.
-
(2006)
EMBO J
, vol.25
, pp. 1934-1944
-
-
Yoshida, M.1
Yoshida, K.2
Kozlov, G.3
-
76
-
-
17144424622
-
Translational control in stress and apoptosis
-
Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005; 6:318-327.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 318-327
-
-
Holcik, M.1
Sonenberg, N.2
-
77
-
-
17144389838
-
Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition
-
Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 2005; 280:14189-14202.
-
(2005)
J Biol Chem
, vol.280
, pp. 14189-14202
-
-
Jiang, H.Y.1
Wek, R.C.2
-
78
-
-
33745977756
-
Proteasome inhibition induces reversible impairments in protein synthesis
-
Ding Q, Dimayuga E, MarkesberyWR, Keller JN. Proteasome inhibition induces reversible impairments in protein synthesis. FASEB J 2006; 20:1055-1063.
-
(2006)
FASEB J
, vol.20
, pp. 1055-1063
-
-
Ding, Q.1
Dimayuga, E.2
Markesbery, W.R.3
Keller, J.N.4
-
79
-
-
18144425142
-
Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase
-
Arora S, Yang JM, Hait WN. Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase. Cancer Res 2005; 65:3806-3810. An interesting example of the interaction between the folding and degradation machineries to regulate the abundance of the eEF2 kinase.
-
(2005)
Cancer Res
, vol.65
, pp. 3806-3810
-
-
Arora, S.1
Yang, J.M.2
Hait, W.N.3
|