메뉴 건너뛰기




Volumn 6, Issue 3, 2005, Pages 221-232

Thinking quantitatively about transcriptional regulation

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; DNA; DOUBLE STRANDED DNA; RHO FACTOR; RNA POLYMERASE; SIGMA FACTOR;

EID: 14644407528     PISSN: 14710072     EISSN: None     Source Type: Journal    
DOI: 10.1038/nrm1588     Document Type: Review
Times cited : (133)

References (79)
  • 1
    • 0034671841 scopus 로고    scopus 로고
    • GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming
    • Toulme, F. et al. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J. 19, 6853-6859 (2000).
    • (2000) EMBO J. , vol.19 , pp. 6853-6859
    • Toulme, F.1
  • 2
    • 1542616348 scopus 로고    scopus 로고
    • Translocation of Escherichia coli RNA polymerase against a protein roadblock in vivo highlights a passive sliding mechanism for transcript elongation
    • Mosrin-Huaman, C., Turnbough, C. L. Jr & Rahmouni, A. R. Translocation of Escherichia coli RNA polymerase against a protein roadblock in vivo highlights a passive sliding mechanism for transcript elongation. Mol. Microbiol. 51, 1471-1481 (2004).
    • (2004) Mol. Microbiol. , vol.51 , pp. 1471-1481
    • Mosrin-Huaman, C.1    Turnbough Jr., C.L.2    Rahmouni, A.R.3
  • 3
    • 0035943341 scopus 로고    scopus 로고
    • 70-retaining transcription elongation complexes from Escherichia coli
    • 70-retaining transcription elongation complexes from Escherichia coli. Cell 106, 443-451 (2001).
    • (2001) Cell , vol.106 , pp. 443-451
    • Bar-Nahum, G.1    Nudler, E.2
  • 4
    • 0035943446 scopus 로고    scopus 로고
    • 70 with RNA polymerase during transcription: Fluorescence resonance energy transfer assay for movement relative to DNA
    • 70 with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 106, 453-463 (2001).
    • (2001) Cell , vol.106 , pp. 453-463
    • Mukhopadhyay, J.1
  • 5
    • 2542505377 scopus 로고    scopus 로고
    • Helicases become mechanistically simpler and functionally more complex
    • von Hippel, P. H. Helicases become mechanistically simpler and functionally more complex. Nature Struct. Mol. Biol. 11, 494-496 (2004).
    • (2004) Nature Struct. Mol. Biol. , vol.11 , pp. 494-496
    • Von Hippel, P.H.1
  • 6
    • 0035951425 scopus 로고    scopus 로고
    • A general model for nucleic acid helicases and their 'coupling' within macromolecular machines
    • von Hippel, P. H. & Delagoutte, E. A general model for nucleic acid helicases and their 'coupling' within macromolecular machines. Cell 104, 177-190 (2001).
    • (2001) Cell , vol.104 , pp. 177-190
    • Von Hippel, P.H.1    Delagoutte, E.2
  • 7
    • 0037294467 scopus 로고    scopus 로고
    • Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: Integration of helicases into cellular processes
    • Delagoutte, E. & von Hippel, P. H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: integration of helicases into cellular processes. Q. Rev. Biophys. 36, 1-69 (2003).
    • (2003) Q. Rev. Biophys. , vol.36 , pp. 1-69
    • Delagoutte, E.1    Von Hippel, P.H.2
  • 8
    • 0028962338 scopus 로고
    • Translocation of the Escherichia coli transcription complex observed in the registers 11 to 20: 'Jumping' of RNA polymerase and asymmetric expansion and contraction of the 'transcription bubble'
    • Zaychikov, E., Denissova, L. & Heumann, H. Translocation of the Escherichia coli transcription complex observed in the registers 11 to 20: 'jumping' of RNA polymerase and asymmetric expansion and contraction of the 'transcription bubble'. Proc. Natl Acad. Sci. USA 92, 1739-1743 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 1739-1743
    • Zaychikov, E.1    Denissova, L.2    Heumann, H.3
  • 9
    • 0029818631 scopus 로고    scopus 로고
    • Transcription processivity: Protein-DNA interactions holding together the elongation complex
    • Nudler, E., Avetissova, E., Markovtsov, V. & Goldfarb, A. Transcription processivity: protein-DNA interactions holding together the elongation complex. Science 273, 211-217 (1996).
    • (1996) Science , vol.273 , pp. 211-217
    • Nudler, E.1    Avetissova, E.2    Markovtsov, V.3    Goldfarb, A.4
  • 10
    • 0032541021 scopus 로고    scopus 로고
    • Spatial organization of transcription elongation complex in Escherichia Coli
    • Nudler, E., Gusarov, I., Avetissova, E., Kozlov, M. & Goldfarb, A. Spatial organization of transcription elongation complex in Escherichia Coli. Science 281, 424-428 (1998).
    • (1998) Science , vol.281 , pp. 424-428
    • Nudler, E.1    Gusarov, I.2    Avetissova, E.3    Kozlov, M.4    Goldfarb, A.5
  • 11
    • 0034725870 scopus 로고    scopus 로고
    • A structural model of transcription elongation
    • Korzheva, N. et al. A structural model of transcription elongation. Science 289, 619-625 (2000).
    • (2000) Science , vol.289 , pp. 619-625
    • Korzheva, N.1
  • 12
    • 0031552174 scopus 로고    scopus 로고
    • The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase
    • Nudler, E., Mustaev, A., Lukhtanov, E. & Goldfarb, A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89, 33-41 (1997).
    • (1997) Cell , vol.89 , pp. 33-41
    • Nudler, E.1    Mustaev, A.2    Lukhtanov, E.3    Goldfarb, A.4
  • 13
    • 0032113494 scopus 로고    scopus 로고
    • Crucial role of the RNA:DNA hybrid in the processivity of transcription
    • Sidorenkov, I., Komissarava, N. & Kashlev, M. Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol. Cell 2, 55-64 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 55-64
    • Sidorenkov, I.1    Komissarava, N.2    Kashlev, M.3
  • 14
    • 0025082365 scopus 로고
    • RNA folding during transcription by Escherichia coli RNA polymerase analyzed by RNA self-cleavage
    • Monforte, J. A., Kahn, J. D. & Hearst, J. E. RNA folding during transcription by Escherichia coli RNA polymerase analyzed by RNA self-cleavage. Biochemistry 29, 7882-7890 (1990).
    • (1990) Biochemistry , vol.29 , pp. 7882-7890
    • Monforte, J.A.1    Kahn, J.D.2    Hearst, J.E.3
  • 15
    • 0030584091 scopus 로고    scopus 로고
    • Promoter proximal sequences modulate RNA polymerase II elongation by a novel mechanism
    • Reeder, T. C. & Hawley, D. K. Promoter proximal sequences modulate RNA polymerase II elongation by a novel mechanism. Cell 87, 767-777 (1996).
    • (1996) Cell , vol.87 , pp. 767-777
    • Reeder, T.C.1    Hawley, D.K.2
  • 16
    • 0031059249 scopus 로고    scopus 로고
    • Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded
    • Komissarova, N. & Kashlev, M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl Acad. Sci. USA 94, 1755-1760 (1997).
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 1755-1760
    • Komissarova, N.1    Kashlev, M.2
  • 17
    • 0032438195 scopus 로고    scopus 로고
    • Functional topography of nascent RNA in elongation intermediates of RNA polymerase
    • Komissarova, N. & Kashlev, M. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. Proc. Natl Acad. Sci. USA 95, 14699-14704 (1998).
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 14699-14704
    • Komissarova, N.1    Kashlev, M.2
  • 18
    • 0026084789 scopus 로고
    • A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli
    • Yager, T. D. & von Hippel, P. H. A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli. Biochemistry 30, 1097-1118 (1991). Presents a thermodynamic analysis of the formation of transcription complexes.
    • (1991) Biochemistry , vol.30 , pp. 1097-1118
    • Yager, T.D.1    Von Hippel, P.H.2
  • 19
    • 0036385743 scopus 로고    scopus 로고
    • Active Escherichia coli transcription elongation complexes are functionally homogeneous
    • Pasman, Z. & von Hippel, P. H. Active Escherichia coli transcription elongation complexes are functionally homogeneous. J. Mol. Biol. 322, 505-519 (2002).
    • (2002) J. Mol. Biol. , vol.322 , pp. 505-519
    • Pasman, Z.1    Von Hippel, P.H.2
  • 20
    • 0033578701 scopus 로고    scopus 로고
    • Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution
    • Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811-824 (1999).
    • (1999) Cell , vol.98 , pp. 811-824
    • Zhang, G.1
  • 21
    • 0034671288 scopus 로고    scopus 로고
    • RNA potymerase: Structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II
    • Ebright, R. H. RNA potymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687-698 (2000).
    • (2000) J. Mol. Biol. , vol.304 , pp. 687-698
    • Ebright, R.H.1
  • 22
    • 0033568350 scopus 로고    scopus 로고
    • A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly
    • Markov, D., Naryshkina, T., Mustaev, A. & Severinov, K. A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly. Genes Dev. 13, 2439-2448 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 2439-2448
    • Markov, D.1    Naryshkina, T.2    Mustaev, A.3    Severinov, K.4
  • 23
    • 0037071844 scopus 로고    scopus 로고
    • Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution
    • Vassylyev, D. G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417, 712-719 (2002).
    • (2002) Nature , vol.417 , pp. 712-719
    • Vassylyev, D.G.1
  • 24
    • 4444270274 scopus 로고    scopus 로고
    • A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex
    • King, R. A., Markov, D., Sen, R., Severinov, K. & Weisberg, R. A. A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex. J. Mol. Biol. 342, 1143-1154 (2004).
    • (2004) J. Mol. Biol. , vol.342 , pp. 1143-1154
    • King, R.A.1    Markov, D.2    Sen, R.3    Severinov, K.4    Weisberg, R.A.5
  • 25
    • 0035827332 scopus 로고    scopus 로고
    • Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 Å resolution
    • Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876-1882 (2001). Describes the structure of an elongating RNA polymerase including the transcription bubble, the RNA-DNA hybrid and the RNA-polymerase active site.
    • (2001) Science , vol.292 , pp. 1876-1882
    • Gnatt, A.L.1    Cramer, P.2    Fu, J.3    Bushnell, D.A.4    Kornberg, R.D.5
  • 26
    • 0036753435 scopus 로고    scopus 로고
    • Swing-gate model of nucleotide entry into the RNA polymerase active center
    • Epshtein, V. et al. Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol. Cell 10, 623-634 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 623-634
    • Epshtein, V.1
  • 27
    • 1142310578 scopus 로고    scopus 로고
    • Structural basis of transcription: Separation of RNA from DNA by RNA polymerase II
    • Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303, 1014-1016 (2004).
    • (2004) Science , vol.303 , pp. 1014-1016
    • Westover, K.D.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 28
    • 0034724953 scopus 로고    scopus 로고
    • Architecture of RNA polymerase II and implications for the transcription mechanism
    • Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640-649 (2000).
    • (2000) Science , vol.288 , pp. 640-649
    • Cramer, P.1
  • 29
    • 0043244877 scopus 로고    scopus 로고
    • Structure and function of the transcription elongation factor GreB bound to bacteria RNA polymerase
    • Opalka, N. et al. Structure and function of the transcription elongation factor GreB bound to bacteria RNA polymerase. Cell 114, 335-345 (2003). Structural demonstration of the binding of GreB to RNA polymerase and the mechanism of RNA-chain cleavage during editing.
    • (2003) Cell , vol.114 , pp. 335-345
    • Opalka, N.1
  • 30
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution
    • Cramer, P., Bushnell, D. A. & Komberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863-1876 (2001).
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Komberg, R.D.3
  • 31
    • 0037543997 scopus 로고    scopus 로고
    • Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase
    • Sosunov, V. et al. Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J. 22, 2234-2244 (2003). Provides evidence to support a two-metal-ion active site in RNA polymerase.
    • (2003) EMBO J. , vol.22 , pp. 2234-2244
    • Sosunov, V.1
  • 32
    • 0037086450 scopus 로고    scopus 로고
    • Structure-based analyse of RNA polymerase function: The largest subunit's rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA-DNA hybrid length
    • Kuznedelov, K., Korzheva, N., Mustaev, A. & Severinov, K. Structure-based analyse of RNA polymerase function: the largest subunit's rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA-DNA hybrid length. EMBO J. 21, 1369-1378 (2002).
    • (2002) EMBO J. , vol.21 , pp. 1369-1378
    • Kuznedelov, K.1    Korzheva, N.2    Mustaev, A.3    Severinov, K.4
  • 33
    • 0344413496 scopus 로고    scopus 로고
    • The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination
    • Toulokhonov, I. & Landick, R. The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol. Cell 12, 1125-1136 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 1125-1136
    • Toulokhonov, I.1    Landick, R.2
  • 34
    • 0345492316 scopus 로고    scopus 로고
    • Macromolecular complexes that unwind nucleic acids
    • von Hippel, P. H. & Delagoutte, E. Macromolecular complexes that unwind nucleic acids. Bioessays 25, 1168-1177 (2003).
    • (2003) Bioessays , vol.25 , pp. 1168-1177
    • Von Hippel, P.H.1    Delagoutte, E.2
  • 35
    • 0026728955 scopus 로고
    • The single-nucleotide addition cycle in transcription: A biophysical and biochemical perspective
    • Erie, D. A., Yager, T. D. & von Hippel, P. H. The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. Annu. Rev. Biophys. Biomol. Struct. 21, 379-415 (1992). Provides mechanistic details of the single-nucleotide-addition and -excision cycle.
    • (1992) Annu. Rev. Biophys. Biomol. Struct. , vol.21 , pp. 379-415
    • Erie, D.A.1    Yager, T.D.2    Von Hippel, P.H.3
  • 36
    • 0000359208 scopus 로고
    • Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity
    • Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135-4139 (1974).
    • (1974) Proc. Natl Acad. Sci. USA , vol.71 , pp. 4135-4139
    • Hopfield, J.J.1
  • 37
    • 0030950638 scopus 로고    scopus 로고
    • RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA
    • Komissarova, N. & Kashlev, M. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272, 15329-15338 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 15329-15338
    • Komissarova, N.1    Kashlev, M.2
  • 38
    • 0032483305 scopus 로고    scopus 로고
    • NTP concentration effects on initial transcription by T 7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation
    • Guajardo, R., Lopez, P., Dreyfus, M. & Sousa, R. NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation. J. Mol. Biol. 281, 777-792 (1998).
    • (1998) J. Mol. Biol. , vol.281 , pp. 777-792
    • Guajardo, R.1    Lopez, P.2    Dreyfus, M.3    Sousa, R.4
  • 39
    • 7444253928 scopus 로고    scopus 로고
    • Sequence-dependent kinetic model for transcription elongation by RNA polymerase
    • Bai, L., Shundrovsky, A. & Wang, M. D. Sequence-dependent kinetic model for transcription elongation by RNA polymerase. J. Mol. Biol. 344, 335-349 (2004).
    • (2004) J. Mol. Biol. , vol.344 , pp. 335-349
    • Bai, L.1    Shundrovsky, A.2    Wang, M.D.3
  • 40
    • 0027761137 scopus 로고
    • Multiple RNA polymerase conformations and GreA: Control of the fidelity of transcription
    • Erie, D. A., Hajiseyedjavadi, O., Young, M. C. & von Hippel, P. H. Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262, 867-873 (1993).
    • (1993) Science , vol.262 , pp. 867-873
    • Erie, D.A.1    Hajiseyedjavadi, O.2    Young, M.C.3    Von Hippel, P.H.4
  • 41
    • 0032524661 scopus 로고    scopus 로고
    • Transcriptional fidelity and proofreading by RNA porymerase II
    • Thomas, M. J., Platas, A. A. & Hawley, D. K. Transcriptional fidelity and proofreading by RNA porymerase II. Cell 93, 627-637 (1998).
    • (1998) Cell , vol.93 , pp. 627-637
    • Thomas, M.J.1    Platas, A.A.2    Hawley, D.K.3
  • 43
    • 0027536870 scopus 로고
    • Transcript cleavage factors from E. coli
    • Borukhov, S., Sagitov, V. & Goldfarb, A. Transcript cleavage factors from E. coli. Cell 72, 459-466 (1993).
    • (1993) Cell , vol.72 , pp. 459-466
    • Borukhov, S.1    Sagitov, V.2    Goldfarb, A.3
  • 45
    • 0346243938 scopus 로고    scopus 로고
    • Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase
    • Laptenko, O., Lee, J., Lomakin, I. & Borukhov, S. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22, 6322-6334 (2003).
    • (2003) EMBO J. , vol.22 , pp. 6322-6334
    • Laptenko, O.1    Lee, J.2    Lomakin, I.3    Borukhov, S.4
  • 46
    • 0347994909 scopus 로고    scopus 로고
    • Donation of catalytic residues to RNA polymerase active center by transcription factor Gre
    • Sosunova, E. et al. Donation of catalytic residues to RNA polymerase active center by transcription factor Gre. Proc. Natl Acad. Sci. USA 100, 15469-15474 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 15469-15474
    • Sosunova, E.1
  • 47
    • 0345047725 scopus 로고    scopus 로고
    • Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking
    • Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J. & Block, S. M. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115, 437-447 (2003). Discusses the role of pauses in the regulation of transcription.
    • (2003) Cell , vol.115 , pp. 437-447
    • Neuman, K.C.1    Abbondanzieri, E.A.2    Landick, R.3    Gelles, J.4    Block, S.M.5
  • 48
    • 0346258014 scopus 로고    scopus 로고
    • Backtracking by single RNA polymerase molecules observed at near-base-pair resolution
    • Shaevitz, J. W., Abbondanzieri, E. A., Landick, R. & Block, S. M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684-687 (2003).
    • (2003) Nature , vol.426 , pp. 684-687
    • Shaevitz, J.W.1    Abbondanzieri, E.A.2    Landick, R.3    Block, S.M.4
  • 49
    • 0034691146 scopus 로고    scopus 로고
    • Pausing by bacteria RNA polymerase is mediated by mechanistically distinct classes of signals
    • Artsimovitch, I. & Landick, R. Pausing by bacteria RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl Acad. Sci. USA 97, 7090-7095 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 7090-7095
    • Artsimovitch, I.1    Landick, R.2
  • 50
    • 0019331859 scopus 로고
    • DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription
    • Martin, F. H. & Tinoco, I. Jr. DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 8, 2295-2299 (1980).
    • (1980) Nucleic Acids Res. , vol.8 , pp. 2295-2299
    • Martin, F.H.1    Tinoco Jr., I.2
  • 51
    • 0028091898 scopus 로고
    • Stability of Escherichia coli transcription complexes near an intrinsic terminator
    • Wilson, K. S. & von Hippel, P. H. Stability of Escherichia coli transcription complexes near an intrinsic terminator. J. Mol. Biol. 244, 36-51 (1994).
    • (1994) J. Mol. Biol. , vol.244 , pp. 36-51
    • Wilson, K.S.1    Von Hippel, P.H.2
  • 52
    • 0035957687 scopus 로고    scopus 로고
    • Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins
    • Toulokhonov, I., Artsimovitch, I. & Landick, R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292, 730-733 (2001).
    • (2001) Science , vol.292 , pp. 730-733
    • Toulokhonov, I.1    Artsimovitch, I.2    Landick, R.3
  • 53
    • 0033120034 scopus 로고    scopus 로고
    • The mechanism of intrinsic transcription termination
    • Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495-504 (1999).
    • (1999) Mol. Cell , vol.3 , pp. 495-504
    • Gusarov, I.1    Nudler, E.2
  • 54
    • 0036863659 scopus 로고    scopus 로고
    • Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination
    • Komissarova, N., Becker, J., Solter, S., Kireeva, M. & Kashlev, M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol Cell 10, 1151-1162 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1151-1162
    • Komissarova, N.1    Becker, J.2    Solter, S.3    Kireeva, M.4    Kashlev, M.5
  • 55
    • 0033597435 scopus 로고    scopus 로고
    • Mechanism of intrinsic transcription termination and antitermination
    • Yamell, W. S. & Roberts, J. W. Mechanism of intrinsic transcription termination and antitermination. Science 284, 611-615 (1999).
    • (1999) Science , vol.284 , pp. 611-615
    • Yamell, W.S.1    Roberts, J.W.2
  • 56
    • 0242321017 scopus 로고    scopus 로고
    • Role of the non-template strand of the elongation bubble in intrinsic transcription termination
    • Ryder, A. M. & Roberts, J. W. Role of the non-template strand of the elongation bubble in intrinsic transcription termination. J. Mol. Biol. 334, 205-213 (2003).
    • (2003) J. Mol. Biol. , vol.334 , pp. 205-213
    • Ryder, A.M.1    Roberts, J.W.2
  • 57
    • 0038286179 scopus 로고    scopus 로고
    • RNA polymerase mutations that impair conversion to a termination- resistant complex by Q antiterminator proteins
    • Santangelo, T. J., Mooney, R. A., Landick, R. & Roberts, J. W. RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins. Genes Dev. 17, 1281-1292 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1281-1292
    • Santangelo, T.J.1    Mooney, R.A.2    Landick, R.3    Roberts, J.W.4
  • 58
    • 0023666140 scopus 로고
    • Transcription termination factor rho is an RNA-DNA helicase
    • Brennan, C. A., Dombroski, A. J. & Platt, T. Transcription termination factor rho is an RNA-DNA helicase. Cell 48, 945-952 (1987).
    • (1987) Cell , vol.48 , pp. 945-952
    • Brennan, C.A.1    Dombroski, A.J.2    Platt, T.3
  • 59
    • 0026527507 scopus 로고
    • Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho
    • Jin, D. J., Burgess, R. R., Richardson, J. P. & Gross, C. A. Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. Proc. Natl Acad. Sci. USA 89, 1453-1457 (1992).
    • (1992) Proc. Natl Acad. Sci. USA , vol.89 , pp. 1453-1457
    • Jin, D.J.1    Burgess, R.R.2    Richardson, J.P.3    Gross, C.A.4
  • 60
    • 0030847146 scopus 로고    scopus 로고
    • Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 1. Characterization and analysis of the reaction
    • Walstrom, K. M., Dozono, J. M., Robic, S. & von Hippel, P. H. Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 1. Characterization and analysis of the reaction. Biochemistry 36, 7980-7992 (1997).
    • (1997) Biochemistry , vol.36 , pp. 7980-7992
    • Walstrom, K.M.1    Dozono, J.M.2    Robic, S.3    Von Hippel, P.H.4
  • 61
    • 0030848285 scopus 로고    scopus 로고
    • Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 2. Processivity, ATP consumption, and RNA binding
    • Walstrom, K. M., Dozono, J. M. & von Hippel, P. H. Kinetics of the RNA-DNA helicase activity of Escherichia coli transcription termination factor rho. 2. Processivity, ATP consumption, and RNA binding. Biochemistry 36, 7993-8004 (1997).
    • (1997) Biochemistry , vol.36 , pp. 7993-8004
    • Walstrom, K.M.1    Dozono, J.M.2    Von Hippel, P.H.3
  • 62
    • 0032508387 scopus 로고    scopus 로고
    • Rho-dependent termination within the trp t' terminator. II. Effects of kinetic competition and rho processivity
    • Zhu, A. Q. & von Hippel, P. H. Rho-dependent termination within the trp t' terminator. II. Effects of kinetic competition and rho processivity. Biochemistry 37, 11215-11222 (1998).
    • (1998) Biochemistry , vol.37 , pp. 11215-11222
    • Zhu, A.Q.1    Von Hippel, P.H.2
  • 63
    • 0032508378 scopus 로고    scopus 로고
    • Rho-dependent termination within the trp t' terminator. I. Effects of rho loading and template sequence
    • Zhu, A. Q. & von Hippel, P. H. Rho-dependent termination within the trp t' terminator. I. Effects of rho loading and template sequence. Biochemistry 37, 11202-11214 (1998).
    • (1998) Biochemistry , vol.37 , pp. 11202-11214
    • Zhu, A.Q.1    Von Hippel, P.H.2
  • 64
    • 4344661527 scopus 로고    scopus 로고
    • Influence of substrate composition on the helicase activity of transcription termination factor Rho: Reduced processivity of Rho hexamers during unwinding of RNA-DNA hybrid regions
    • Walmacq, C., Rahmouni, A. R. & Boudvillain, M. Influence of substrate composition on the helicase activity of transcription termination factor Rho: reduced processivity of Rho hexamers during unwinding of RNA-DNA hybrid regions. J. Mol. Biol. 342, 403-420 (2004).
    • (2004) J. Mol. Biol. , vol.342 , pp. 403-420
    • Walmacq, C.1    Rahmouni, A.R.2    Boudvillain, M.3
  • 65
    • 0019729701 scopus 로고
    • Termination of transcription by nusA gene protein of Escherichia coli
    • Greenblatt, J., McLimont, M. & Hanly, S. Termination of transcription by nusA gene protein of Escherichia coli. Nature 292, 215-220 (1981).
    • (1981) Nature , vol.292 , pp. 215-220
    • Greenblatt, J.1    McLimont, M.2    Hanly, S.3
  • 66
    • 0026726828 scopus 로고
    • NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage λ
    • Li, J., Horwitz, R., McCracken, S. & Greenblatt, J. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage λ. J. Biol. Chem. 267, 6012-6019 (1992).
    • (1992) J. Biol. Chem. , vol.267 , pp. 6012-6019
    • Li, J.1    Horwitz, R.2    McCracken, S.3    Greenblatt, J.4
  • 67
    • 0026527997 scopus 로고
    • Requirement for E. coli NusG protein in factor-dependent transcription termination
    • Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989-994 (1992).
    • (1992) Cell , vol.68 , pp. 989-994
    • Sullivan, S.L.1    Gottesman, M.E.2
  • 68
    • 0027749638 scopus 로고
    • NusG alters rho-dependent termination of transcription in vitro independent of kinetic coupling
    • Nehrke, K. W., Zalatan, F. & Platt, T. NusG alters rho-dependent termination of transcription in vitro independent of kinetic coupling. Gene Expr. 3, 119-133 (1993).
    • (1993) Gene Expr. , vol.3 , pp. 119-133
    • Nehrke, K.W.1    Zalatan, F.2    Platt, T.3
  • 69
    • 0026095918 scopus 로고
    • Assembly of transcription elongation complexes containing the N protein of phage λ and the Escherichia coli elongation factors NusA, NusB, NusG, and S10
    • Mason, S.W. & Greenblatt, J. Assembly of transcription elongation complexes containing the N protein of phage λ and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev. 5, 1504-1512 (1991).
    • (1991) Genes Dev. , vol.5 , pp. 1504-1512
    • Mason, S.W.1    Greenblatt, J.2
  • 70
    • 10244264641 scopus 로고    scopus 로고
    • Components of multiprotein-RNA complex that controls transcription elongation in Escherichia coli phage λ
    • Das, A. et al. Components of multiprotein-RNA complex that controls transcription elongation in Escherichia coli phage λ. Methods Enzymol. 274, 374-402 (1996).
    • (1996) Methods Enzymol. , vol.274 , pp. 374-402
    • Das, A.1
  • 71
    • 0027453160 scopus 로고
    • Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10
    • Nodwell, J. R. & Greenblatt, J. Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell 72, 261-268 (1993).
    • (1993) Cell , vol.72 , pp. 261-268
    • Nodwell, J.R.1    Greenblatt, J.2
  • 72
    • 0035898536 scopus 로고    scopus 로고
    • Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination
    • Torres, M., Condon, C., Balada, J. M., Squires, C. & Squires, C. L. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J. 20, 3811-3820 (2001).
    • (2001) EMBO J. , vol.20 , pp. 3811-3820
    • Torres, M.1    Condon, C.2    Balada, J.M.3    Squires, C.4    Squires, C.L.5
  • 73
    • 0030979021 scopus 로고    scopus 로고
    • NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA
    • Vogel, U. & Jensen, K. F. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J. Biol. Chem. 272, 12265-12271 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 12265-12271
    • Vogel, U.1    Jensen, K.F.2
  • 75
    • 0025976369 scopus 로고
    • Transcript elongation and termination are competitive kinetic processes
    • von Hippel, P.H. & Yager, T.D. Transcript elongation and termination are competitive kinetic processes. Proc. Natl Acad. Sci. USA 88, 2307-2311 (1991). Sets up the transition-state approach to transcription kinetics.
    • (1991) Proc. Natl Acad. Sci. USA , vol.88 , pp. 2307-2311
    • Von Hippel, P.H.1    Yager, T.D.2
  • 76
    • 0037058904 scopus 로고    scopus 로고
    • Reaction pathways in transcript elongation
    • von Hippel, P. H. & Pasman, Z. Reaction pathways in transcript elongation. Biophys. Chem. 101-102, 401-423 (2002). Provides a detailed discussion of the alternative reaction pathways in transcription.
    • (2002) Biophys. Chem. , vol.101-102 , pp. 401-423
    • Von Hippel, P.H.1    Pasman, Z.2
  • 77
    • 0031558773 scopus 로고    scopus 로고
    • Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage λ
    • Rees, W., Weitzel, S., Das, A. & von Hippel, P. Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage λ. J. Mol. Biol. 273, 797-893 (1997).
    • (1997) J. Mol. Biol. , vol.273 , pp. 797-893
    • Rees, W.1    Weitzel, S.2    Das, A.3    Von Hippel, P.4
  • 78
    • 0023645154 scopus 로고
    • Mapping and characterization of transcriptional pause sites in the early genetic region of bacteriophage T7
    • Levin, J. R. & Chamberlin, M. J. Mapping and characterization of transcriptional pause sites in the early genetic region of bacteriophage T7. J. Mol. Biol. 196, 61-84 (1987).
    • (1987) J. Mol. Biol. , vol.196 , pp. 61-84
    • Levin, J.R.1    Chamberlin, M.J.2
  • 79
    • 0023711743 scopus 로고
    • Transcription termination in Escherichia coli. Measurement of the rate of enzyme release from Rho-independent terminators
    • Arndt, K. M. & Chamberlin, M. J. Transcription termination in Escherichia coli. Measurement of the rate of enzyme release from Rho-independent terminators. J. Mol. Biol. 202, 271-285 (1988).
    • (1988) J. Mol. Biol. , vol.202 , pp. 271-285
    • Arndt, K.M.1    Chamberlin, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.