메뉴 건너뛰기




Volumn 13, Issue 3, 2003, Pages 284-290

Mechanisms of sodium channel inactivation

Author keywords

[No Author keywords available]

Indexed keywords

SODIUM CHANNEL;

EID: 0038721687     PISSN: 09594388     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-4388(03)00065-5     Document Type: Review
Times cited : (212)

References (67)
  • 1
    • 0033694833 scopus 로고    scopus 로고
    • From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels
    • Catterall W.A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 26:2000;13-25.
    • (2000) Neuron , vol.26 , pp. 13-25
    • Catterall, W.A.1
  • 2
    • 0035141321 scopus 로고    scopus 로고
    • Inactivation and recovery of sodium channels in cerebellar Purkinje neurons: Evidence for two mechanisms
    • Recovery from inactivation in cerebellar Purkinje neurons is unusual in that it is accompanied by a significant ionic current. The authors suggest a model to explain this phenomenon that postulates that there are two mechanisms of inactivation. The conventional process involves the III-IV linker inactivating particle occluding the pore. A novel process involves a voltage-dependent block by another particle that can enter and exit only when the channel is open, so that current flows during recovery.
    • Raman I.M., Bean B.P. Inactivation and recovery of sodium channels in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys. J. 80:2001;729-737 Recovery from inactivation in cerebellar Purkinje neurons is unusual in that it is accompanied by a significant ionic current. The authors suggest a model to explain this phenomenon that postulates that there are two mechanisms of inactivation. The conventional process involves the III-IV linker inactivating particle occluding the pore. A novel process involves a voltage-dependent block by another particle that can enter and exit only when the channel is open, so that current flows during recovery.
    • (2001) Biophys. J. , vol.80 , pp. 729-737
    • Raman, I.M.1    Bean, B.P.2
  • 3
    • 0037092416 scopus 로고    scopus 로고
    • A role for phosphorylation in the maintenance of resurgent sodium current in cerebellar Purkinje neurons
    • v1.6. The authors suggest that the resurgent current may result from the alternative inactivation process, and they find that it requires constitutive phosphorylation.
    • v1.6. The authors suggest that the resurgent current may result from the alternative inactivation process, and they find that it requires constitutive phosphorylation.
    • (2002) J. Neurosci. , vol.22 , pp. 3100-3107
    • Grieco, T.M.1    Afshari, F.S.2    Raman, I.M.3
  • 4
    • 0035882277 scopus 로고    scopus 로고
    • Nav1.3 sodium channels: Rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons
    • Cummins T.R., Aglieco F., Renganathan M., Herzog R.I., Dib-Hajj S.D., Waxman S.G. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci. 21:2001;5952-5961.
    • (2001) J. Neurosci. , vol.21 , pp. 5952-5961
    • Cummins, T.R.1    Aglieco, F.2    Renganathan, M.3    Herzog, R.I.4    Dib-Hajj, S.D.5    Waxman, S.G.6
  • 6
    • 0033831716 scopus 로고    scopus 로고
    • Structural study of the sodium channel inactivation gate peptide including an isoleucine-phenylalanine-methionine motif and its analogous peptide (phenylalanine/glutamine) in trifluoroethanol solutions and SDS micelles
    • Kuroda Y., Miyamoto K., Matsumoto M., Maeda Y., Kanaori K., Otaka A., Fujii N., Nakagawa T. Structural study of the sodium channel inactivation gate peptide including an isoleucine-phenylalanine-methionine motif and its analogous peptide (phenylalanine/glutamine) in trifluoroethanol solutions and SDS micelles. J. Pept. Res. 56:2000;172-184.
    • (2000) J. Pept. Res. , vol.56 , pp. 172-184
    • Kuroda, Y.1    Miyamoto, K.2    Matsumoto, M.3    Maeda, Y.4    Kanaori, K.5    Otaka, A.6    Fujii, N.7    Nakagawa, T.8
  • 7
    • 0035888115 scopus 로고    scopus 로고
    • Solution structure of the cytoplasmic linker between domain III-S6 and domain IV-S1 (III-IV linker) of the rat brain sodium channel in SDS micelles
    • Miyamoto K., Nakagawa T., Kuroda Y. Solution structure of the cytoplasmic linker between domain III-S6 and domain IV-S1 (III-IV linker) of the rat brain sodium channel in SDS micelles. Biopolymers. 59:2001;380-393.
    • (2001) Biopolymers , vol.59 , pp. 380-393
    • Miyamoto, K.1    Nakagawa, T.2    Kuroda, Y.3
  • 8
    • 0035078540 scopus 로고    scopus 로고
    • Solution structures of the inactivation gate particle peptides of rat brain type-IIA and human heart sodium channels in SDS micelles
    • Miyamoto K., Kanaori K., Nakagawa T., Kuroda Y. Solution structures of the inactivation gate particle peptides of rat brain type-IIA and human heart sodium channels in SDS micelles. J. Pept. Res. 57:2001;203-214.
    • (2001) J. Pept. Res. , vol.57 , pp. 203-214
    • Miyamoto, K.1    Kanaori, K.2    Nakagawa, T.3    Kuroda, Y.4
  • 9
    • 0034851986 scopus 로고    scopus 로고
    • 5 (S4-S5) in domains III and IV of human brain sodium channels in SDS micelles
    • 5 (S4-S5) in domains III and IV of human brain sodium channels in SDS micelles. J. Pept. Res. 58:2001;193-203.
    • (2001) J. Pept. Res. , vol.58 , pp. 193-203
    • Miyamoto, K.1    Nakagawa, T.2    Kuroda, Y.3
  • 11
    • 0031747099 scopus 로고    scopus 로고
    • Inactivation and secondary structure in the D4/S4-5 region of the SkM1 sodium channel
    • Filatov G.N., Nguyen T.P., Kraner S.D., Barchi R.L. Inactivation and secondary structure in the D4/S4-5 region of the SkM1 sodium channel. J. Gen. Physiol. 111:1998;703-715.
    • (1998) J. Gen. Physiol. , vol.111 , pp. 703-715
    • Filatov, G.N.1    Nguyen, T.P.2    Kraner, S.D.3    Barchi, R.L.4
  • 12
    • 0030855929 scopus 로고    scopus 로고
    • Interaction between the sodium channel inactivation linker and domain III S4-S5
    • Smith M.R., Goldin A.L. Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys. J. 73:1997;1885-1895.
    • (1997) Biophys. J. , vol.73 , pp. 1885-1895
    • Smith, M.R.1    Goldin, A.L.2
  • 13
    • 0031975208 scopus 로고    scopus 로고
    • A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel α-subunit in fast inactivation
    • McPhee J.C., Ragsdale D.S., Scheuer T., Catterall W.A. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel α-subunit in fast inactivation. J. Biol. Chem. 273:1998;1121-1129.
    • (1998) J. Biol. Chem. , vol.273 , pp. 1121-1129
    • McPhee, J.C.1    Ragsdale, D.S.2    Scheuer, T.3    Catterall, W.A.4
  • 14
    • 0036194575 scopus 로고    scopus 로고
    • Molecular modeling and dynamics of the sodium channel inactivation gate
    • The authors use theoretical modeling and molecular dynamic simulations to predict the structure of the III-IV linker inactivating particle. They propose that there are two α-helical segments followed by a hairpin motif, with the hairpin being responsible for long-range interactions that facilitate the movement of the IFM motif towards its docking site.
    • Sirota F.L., Pascutti P.G., Anteneodo C. Molecular modeling and dynamics of the sodium channel inactivation gate. Biophys. J. 82:2002;1207-1215 The authors use theoretical modeling and molecular dynamic simulations to predict the structure of the III-IV linker inactivating particle. They propose that there are two α-helical segments followed by a hairpin motif, with the hairpin being responsible for long-range interactions that facilitate the movement of the IFM motif towards its docking site.
    • (2002) Biophys. J. , vol.82 , pp. 1207-1215
    • Sirota, F.L.1    Pascutti, P.G.2    Anteneodo, C.3
  • 17
    • 0033761775 scopus 로고    scopus 로고
    • A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence
    • Ong B.-H., Tomaselli G.F., Balser J.R. A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J. Gen. Physiol. 116:2000;653-661.
    • (2000) J. Gen. Physiol. , vol.116 , pp. 653-661
    • Ong, B.-H.1    Tomaselli, G.F.2    Balser, J.R.3
  • 18
    • 0036792849 scopus 로고    scopus 로고
    • + channels
    • The authors show that modification of engineered cysteine residues in the P regions of all four domains demonstrate no difference in accessibility following slow inactivation, suggesting that the outer mouth of the pore remains open.
    • + channels. J. Gen. Physiol. 120:2002;509-516 The authors show that modification of engineered cysteine residues in the P regions of all four domains demonstrate no difference in accessibility following slow inactivation, suggesting that the outer mouth of the pore remains open.
    • (2002) J. Gen. Physiol. , vol.120 , pp. 509-516
    • Struyk, A.F.1    Cannon, S.C.2
  • 19
    • 0034045558 scopus 로고    scopus 로고
    • Role of domain 4 in sodium channel slow inactivation
    • Mitrovic N., George A.L. Jr., Horn R. Role of domain 4 in sodium channel slow inactivation. J. Gen. Physiol. 115:2000;707-717.
    • (2000) J. Gen. Physiol. , vol.115 , pp. 707-717
    • Mitrovic, N.1    George A.L., Jr.2    Horn, R.3
  • 20
    • 0035033883 scopus 로고    scopus 로고
    • + channel slow inactivation
    • v1.5. These results suggest that the kinetics of slow inactivation are regulated by residues that are outside of the P regions.
    • v1.5. These results suggest that the kinetics of slow inactivation are regulated by residues that are outside of the P regions.
    • (2001) Biophys. J. , vol.80 , pp. 2221-2230
    • Vilin, Y.Y.1    Fujimoto, E.2    Ruben, P.C.3
  • 21
    • 0034817340 scopus 로고    scopus 로고
    • Residue-specific effects on slow inactivation at V787 in D2-S6 of Nav1.4 sodium channels
    • O'Reilly J.P., Wang S.-Y., Wang G.K. Residue-specific effects on slow inactivation at V787 in D2-S6 of Nav1.4 sodium channels. Biophys. J. 81:2001;2100-2111.
    • (2001) Biophys. J. , vol.81 , pp. 2100-2111
    • O'Reilly, J.P.1    Wang, S.-Y.2    Wang, G.K.3
  • 23
    • 0037020086 scopus 로고    scopus 로고
    • Interaction between fast and ultra-slow inactivation in the voltage-gated sodium channel. Does the inactivation gate stabilize the channel structure
    • The authors show that ultra-slow inactivation is enhanced by a single amino acid substitution in the P region of domain IV. This process is accompanied by a rearrangement of the outer vestibule, and it is inhibited by binding of the fast inactivation particle in the inner vestibule.
    • Hilber K., Sandtner W., Kudlacek O., Schreiner B., Glaaser I., Schütz W., Fozzard H.A., Dudley S.C. Jr., Todt H. Interaction between fast and ultra-slow inactivation in the voltage-gated sodium channel. Does the inactivation gate stabilize the channel structure. J. Biol. Chem. 277:2002;37105-37115 The authors show that ultra-slow inactivation is enhanced by a single amino acid substitution in the P region of domain IV. This process is accompanied by a rearrangement of the outer vestibule, and it is inhibited by binding of the fast inactivation particle in the inner vestibule.
    • (2002) J. Biol. Chem. , vol.277 , pp. 37105-37115
    • Hilber, K.1    Sandtner, W.2    Kudlacek, O.3    Schreiner, B.4    Glaaser, I.5    Schütz, W.6    Fozzard, H.A.7    Dudley S.C., Jr.8    Todt, H.9
  • 24
    • 0035883993 scopus 로고    scopus 로고
    • Implication of the C-terminal region of the α-subunit of voltage-gated sodium channels in fast inactivation
    • Deschênes I., Trottier E., Chahine M. Implication of the C-terminal region of the α-subunit of voltage-gated sodium channels in fast inactivation. J. Membr. Biol. 183:2001;103-114.
    • (2001) J. Membr. Biol. , vol.183 , pp. 103-114
    • Deschênes, I.1    Trottier, E.2    Chahine, M.3
  • 25
    • 0035910013 scopus 로고    scopus 로고
    • Role of the C-terminal domain in inactivation of brain and cardiac sodium channels
    • Mantegazza M., Yu F.H., Catterall W.A., Scheuer T. Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc. Natl. Acad. Sci. USA. 98:2001;15348-15353.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 15348-15353
    • Mantegazza, M.1    Yu, F.H.2    Catterall, W.A.3    Scheuer, T.4
  • 28
    • 0037088663 scopus 로고    scopus 로고
    • + channel C terminus. Evidence for a role of helical structures in modulation of channel inactivation
    • The authors find that homology modeling and circular dichroism of the carboxy-terminus predicts six α helices in the proximal half with little structure in the distal half. Deletion of the distal half reduces sodium current density but does not affect gating. In contrast, a deletion that includes the sixth helix reduces current density and delays inactivation by shifting gating into a bursting mode. It is proposed that charged residues in the sixth helix stabilize the inactivated state.
    • + channel C terminus. Evidence for a role of helical structures in modulation of channel inactivation. J. Biol. Chem. 277:2002;9233-9241 The authors find that homology modeling and circular dichroism of the carboxy-terminus predicts six α helices in the proximal half with little structure in the distal half. Deletion of the distal half reduces sodium current density but does not affect gating. In contrast, a deletion that includes the sixth helix reduces current density and delays inactivation by shifting gating into a bursting mode. It is proposed that charged residues in the sixth helix stabilize the inactivated state.
    • (2002) J. Biol. Chem. , vol.277 , pp. 9233-9241
    • Cormier, J.W.1    Rivolta, I.2    Tateyama, M.3    Yang, A.-S.4    Kass, R.S.5
  • 30
  • 32
    • 0032585930 scopus 로고    scopus 로고
    • The extracellular domain of the β1 subunit is both necessary and sufficient for β1-like modulation of sodium channel gating
    • McCormick K.A., Srinivasan J., White K., Scheuer T., Catterall W.A. The extracellular domain of the β1 subunit is both necessary and sufficient for β1-like modulation of sodium channel gating. J. Biol. Chem. 274:1999;32638-32646.
    • (1999) J. Biol. Chem. , vol.274 , pp. 32638-32646
    • McCormick, K.A.1    Srinivasan, J.2    White, K.3    Scheuer, T.4    Catterall, W.A.5
  • 34
    • 0035426149 scopus 로고    scopus 로고
    • Developmental expression of the novel voltage-gated sodium channel auxiliary subunit β3, in rat CNS
    • Shah B.S., Stevens E.B., Pinnock R.D., Dixon A.K., Lee K. Developmental expression of the novel voltage-gated sodium channel auxiliary subunit β3, in rat CNS. J. Physiol. (Lond.). 534:2001;763-776.
    • (2001) J. Physiol. (Lond.) , vol.534 , pp. 763-776
    • Shah, B.S.1    Stevens, E.B.2    Pinnock, R.D.3    Dixon, A.K.4    Lee, K.5
  • 35
    • 0035654997 scopus 로고    scopus 로고
    • Differential modulation of sodium channel gating and persistent sodium currents by the β1, β2, and β3 subunits
    • The authors find that all three β subunits shift sodium channel activation and inactivation to more positive potentials in tsA-201 cells, but that the β3 subunit is unique in causing increased persistent current. The β3 subunit is expressed broadly in the CNS and PNS, and its association with the α subunit should increase electrical excitability.
    • Qu Y., Curtis R., Lawson D., Gilbride K., Ge P., Distefano P.S., Silos-Santiago I., Catterall W.A., Scheuer T. Differential modulation of sodium channel gating and persistent sodium currents by the β1, β2, and β3 subunits. Mol. Cell Neurosci. 18:2001;570-580 The authors find that all three β subunits shift sodium channel activation and inactivation to more positive potentials in tsA-201 cells, but that the β3 subunit is unique in causing increased persistent current. The β3 subunit is expressed broadly in the CNS and PNS, and its association with the α subunit should increase electrical excitability.
    • (2001) Mol. Cell Neurosci. , vol.18 , pp. 570-580
    • Qu, Y.1    Curtis, R.2    Lawson, D.3    Gilbride, K.4    Ge, P.5    Distefano, P.S.6    Silos-Santiago, I.7    Catterall, W.A.8    Scheuer, T.9
  • 36
    • 0037063705 scopus 로고    scopus 로고
    • Functional modulation of human brain Nav1.3 sodium channels, expressed in mammalian cells, by auxiliary β1, β2 and β3 subunits
    • Meadows L.S., Chen Y.H., Powell A.J., Clare J.J., Ragsdale D.S. Functional modulation of human brain Nav1.3 sodium channels, expressed in mammalian cells, by auxiliary β1, β2 and β3 subunits. Neuroscience. 114:2002;745-753.
    • (2002) Neuroscience , vol.114 , pp. 745-753
    • Meadows, L.S.1    Chen, Y.H.2    Powell, A.J.3    Clare, J.J.4    Ragsdale, D.S.5
  • 38
    • 0037168659 scopus 로고    scopus 로고
    • Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits
    • The authors created knockout mice that lacked the β2 subunit, and found that they are viable but demonstrate reduced sodium channel density, as evidenced by both electrophysiological recording and saxitoxin binding, with an increased threshold for action potential generation. The mice displayed increased susceptibility to seizures but no other neurological abnormalities.
    • Chen C., Bharucha V., Chen Y., Westenbroek R.E., Brown A., Malhotra J.D., Jones D., Avery C., Gillespie P.J. III, Kazen-Gillespie K.A.et al. Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits. Proc. Natl. Acad Sci. USA. 99:2002;17072-17077 The authors created knockout mice that lacked the β2 subunit, and found that they are viable but demonstrate reduced sodium channel density, as evidenced by both electrophysiological recording and saxitoxin binding, with an increased threshold for action potential generation. The mice displayed increased susceptibility to seizures but no other neurological abnormalities.
    • (2002) Proc. Natl. Acad Sci. USA , vol.99 , pp. 17072-17077
    • Chen, C.1    Bharucha, V.2    Chen, Y.3    Westenbroek, R.E.4    Brown, A.5    Malhotra, J.D.6    Jones, D.7    Avery, C.8    Gillespie P.J. III9    Kazen-Gillespie, K.A.10
  • 39
    • 0028263694 scopus 로고
    • Auxiliary subunits of voltage-gated ion channels
    • Isom L.L., DeJongh K.S., Catterall W.A. Auxiliary subunits of voltage-gated ion channels. Neuron. 12:1994;1183-1194.
    • (1994) Neuron , vol.12 , pp. 1183-1194
    • Isom, L.L.1    DeJongh, K.S.2    Catterall, W.A.3
  • 40
    • 0033929242 scopus 로고    scopus 로고
    • Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses
    • Cannon S.C. Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses. Kidney Int. 57:2000;772-779.
    • (2000) Kidney Int. , vol.57 , pp. 772-779
    • Cannon, S.C.1
  • 41
    • 0036087310 scopus 로고    scopus 로고
    • Inherited sodium channelopathies: Models for acquired arrhythmias?
    • Balser J.R. Inherited sodium channelopathies: models for acquired arrhythmias? Am. J. Physiol. Heart Circ. Physiol. 282:2002;H1175-H1180.
    • (2002) Am. J. Physiol. Heart Circ. Physiol. , vol.282
    • Balser, J.R.1
  • 44
    • 0035023665 scopus 로고    scopus 로고
    • A novel mechanism associated with idiopathic ventricular fibrillation (IVF) mutations R1232W and T1620M in human cardiac sodium channels
    • Vilin Y.Y., Fujimoto E., Ruben P.C. A novel mechanism associated with idiopathic ventricular fibrillation (IVF) mutations R1232W and T1620M in human cardiac sodium channels. Pflugers Arch. 442:2001;204-211.
    • (2001) Pflugers Arch. , vol.442 , pp. 204-211
    • Vilin, Y.Y.1    Fujimoto, E.2    Ruben, P.C.3
  • 46
    • 0035903135 scopus 로고    scopus 로고
    • Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes
    • Rivolta I., Abriel H., Tateyama M., Liu H., Memmi M., Vardas P., Napolitano C., Priori S.G., Kass R.S. Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J. Biol. Chem. 276:2001;30623-30630.
    • (2001) J. Biol. Chem. , vol.276 , pp. 30623-30630
    • Rivolta, I.1    Abriel, H.2    Tateyama, M.3    Liu, H.4    Memmi, M.5    Vardas, P.6    Napolitano, C.7    Priori, S.G.8    Kass, R.S.9
  • 49
    • 0035071143 scopus 로고    scopus 로고
    • A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus and prevalence of variants in patients with epilepsy
    • Escayg A., Heils A., MacDonald B.T., Haug K., Sander T., Meisler M.H. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus and prevalence of variants in patients with epilepsy. Am. J. Hum. Genet. 68:2001;866-873.
    • (2001) Am. J. Hum. Genet. , vol.68 , pp. 866-873
    • Escayg, A.1    Heils, A.2    MacDonald, B.T.3    Haug, K.4    Sander, T.5    Meisler, M.H.6
  • 56
    • 0034815420 scopus 로고    scopus 로고
    • Skeletal muscle sodium channel is affected by an epileptogenic β1 subunit mutation
    • Moran O., Conti F. Skeletal muscle sodium channel is affected by an epileptogenic β1 subunit mutation. Biochem. Biophys. Res. Commun. 282:2001;55-59.
    • (2001) Biochem. Biophys. Res. Commun. , vol.282 , pp. 55-59
    • Moran, O.1    Conti, F.2
  • 57
    • 0036291451 scopus 로고    scopus 로고
    • Moran O, Modulation of sodium current in mammalian cells by an epilepsy-correlated β1-subunit mutation
    • Tammaro P., Conti F. Moran O, Modulation of sodium current in mammalian cells by an epilepsy-correlated β1-subunit mutation. Biochem. Biophys. Res. Commun. 291:2002;1095-1101.
    • (2002) Biochem. Biophys. Res. Commun. , vol.291 , pp. 1095-1101
    • Tammaro, P.1    Conti, F.2
  • 58
    • 0037115031 scopus 로고    scopus 로고
    • Functional and biochemical analysis of a sodium channel β1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1
    • The authors find that the mutant β1 subunit that causes GEFS+1 increases sodium channel availability at hyperpolarized potentials and reduces current rundown during high frequency depolarizations compared to the wild-type β1 subunit. The mutation also disrupts homophilic cell adhesion, but it does not function as a dominant negative subunit.
    • Meadows L.S., Malhotra A., Loukas A., Thyagarajan V., Kazen-Gillespie K.A., Koopmann M.C., Kriegler S., Isom L.L., Ragsdale D.S. Functional and biochemical analysis of a sodium channel β1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1. J. Neurosci. 22:2002;10699-10709 The authors find that the mutant β1 subunit that causes GEFS+1 increases sodium channel availability at hyperpolarized potentials and reduces current rundown during high frequency depolarizations compared to the wild-type β1 subunit. The mutation also disrupts homophilic cell adhesion, but it does not function as a dominant negative subunit.
    • (2002) J. Neurosci. , vol.22 , pp. 10699-10709
    • Meadows, L.S.1    Malhotra, A.2    Loukas, A.3    Thyagarajan, V.4    Kazen-Gillespie, K.A.5    Koopmann, M.C.6    Kriegler, S.7    Isom, L.L.8    Ragsdale, D.S.9
  • 59
    • 0035478007 scopus 로고    scopus 로고
    • Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2
    • The authors find that two α subunit mutations that cause GEFS+2 have different effects on sodium channel activity in Xenopus oocytes. R1648H in IVth domain S4 accelerates recovery from inactivation and reduces current rundown during high frequency depolarizations, which should increase electrical excitability. In contrast, T875M in II S4 enhances slow inactivation, thus decreasing channel availability and electrical excitability.
    • Spampanato J., Escayg A., Meisler M.H., Goldin A.L. Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J. Neurosci. 21:2001;7481-7490 The authors find that two α subunit mutations that cause GEFS+2 have different effects on sodium channel activity in Xenopus oocytes. R1648H in IVth domain S4 accelerates recovery from inactivation and reduces current rundown during high frequency depolarizations, which should increase electrical excitability. In contrast, T875M in II S4 enhances slow inactivation, thus decreasing channel availability and electrical excitability.
    • (2001) J. Neurosci. , vol.21 , pp. 7481-7490
    • Spampanato, J.1    Escayg, A.2    Meisler, M.H.3    Goldin, A.L.4
  • 60
    • 0034954467 scopus 로고    scopus 로고
    • Enhanced inactivation and acceleration of activation of the sodium channel associated with epilepsy in man
    • Alekov A.K., Rahman M., Mitrovic N., Lehmann-Horn F., Lerche H. Enhanced inactivation and acceleration of activation of the sodium channel associated with epilepsy in man. Eur. J. Neurosci. 13:2001;2171-2176.
    • (2001) Eur. J. Neurosci. , vol.13 , pp. 2171-2176
    • Alekov, A.K.1    Rahman, M.2    Mitrovic, N.3    Lehmann-Horn, F.4    Lerche, H.5
  • 62
    • 0034671216 scopus 로고    scopus 로고
    • A sodium channel mutation causing epilepsy in man exhibits defects in fast inactivation and inactivation in vitro
    • Alekov A.K., Rahman M.M., Mitrovic N., Lehmann-Horn F., Lerche H. A sodium channel mutation causing epilepsy in man exhibits defects in fast inactivation and inactivation in vitro. J. Physiol. (Lond.). 529:2000;533-539.
    • (2000) J. Physiol. (Lond.) , vol.529 , pp. 533-539
    • Alekov, A.K.1    Rahman, M.M.2    Mitrovic, N.3    Lehmann-Horn, F.4    Lerche, H.5
  • 63
    • 0037071896 scopus 로고    scopus 로고
    • Molecular basis of an inherited epilepsy
    • v1.1 cDNA clone was constructed, expressed in tsA-201 cells, and used to study three mutations that cause GEFS+2. The authors found that R1648H increased persistent current to approximately 4% and T875M and W1204R increased persistent current to 1-2%.
    • v1.1 cDNA clone was constructed, expressed in tsA-201 cells, and used to study three mutations that cause GEFS+2. The authors found that R1648H increased persistent current to approximately 4% and T875M and W1204R increased persistent current to 1-2%.
    • (2002) Neuron. , vol.34 , pp. 877-884
    • Lossin, C.1    Wang, D.W.2    Rhodes, T.H.3    Vanoye, C.G.4    George A.L., Jr.5
  • 64
    • 0035863416 scopus 로고    scopus 로고
    • A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities
    • v1.2 mutant channel with slowed inactivation and increased persistent current, and found that they showed seizure activity and had a shortened life span. Electroencephalographic recordings demonstrated focal seizures in the hippocampus, with generalization to the cortex in some cases.
    • v1.2 mutant channel with slowed inactivation and increased persistent current, and found that they showed seizure activity and had a shortened life span. Electroencephalographic recordings demonstrated focal seizures in the hippocampus, with generalization to the cortex in some cases.
    • (2001) Neuroscience , vol.102 , pp. 307-317
    • Kearney, J.A.1    Plummer, N.W.2    Smith, M.R.3    Kapur, J.4    Cummins, T.R.5    Waxman, S.G.6    Goldin, A.L.7    Meisler, M.H.8
  • 65
    • 0033842533 scopus 로고    scopus 로고
    • A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation
    • Bendahhou S., Cummins T.R., Hahn A.F., Langlois S., Waxman S.G., Ptácek L.J. A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation. J. Clin. Invest. 106:2000;431-438.
    • (2000) J. Clin. Invest. , vol.106 , pp. 431-438
    • Bendahhou, S.1    Cummins, T.R.2    Hahn, A.F.3    Langlois, S.4    Waxman, S.G.5    Ptácek, L.J.6
  • 66
    • 0034554770 scopus 로고    scopus 로고
    • The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation
    • Struyk A.F., Scoggan K.A., Bulman D.E., Cannon S.C. The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. J. Neurosci. 20:2000;8610-8617.
    • (2000) J. Neurosci. , vol.20 , pp. 8610-8617
    • Struyk, A.F.1    Scoggan, K.A.2    Bulman, D.E.3    Cannon, S.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.