메뉴 건너뛰기




Volumn 18, Issue 2-3, 2011, Pages 59-88

CREDIT SCORING, STATISTICAL TECHNIQUES AND EVALUATION CRITERIA: A REVIEW OF THE LITERATURE

Author keywords

classification techniques; credit scoring; literature review; performance evaluation criteria

Indexed keywords


EID: 85104787192     PISSN: 15501949     EISSN: 21600074     Source Type: Journal    
DOI: 10.1002/isaf.325     Document Type: Article
Times cited : (275)

References (214)
  • 2
    • 67349286547 scopus 로고    scopus 로고
    • An evaluation of alternative scoring models in private banking
    • Abdou H. 2009b. An evaluation of alternative scoring models in private banking. Journal of Risk Finance 10(1): 38–53.
    • (2009) Journal of Risk Finance , vol.10 , Issue.1 , pp. 38-53
    • Abdou, H.1
  • 3
    • 67349195042 scopus 로고    scopus 로고
    • Genetic programming for credit scoring: the case of Egyptian public sector banks
    • Abdou H. 2009c. Genetic programming for credit scoring: the case of Egyptian public sector banks. Expert Systems with Applications 36(9): 11402–11417.
    • (2009) Expert Systems with Applications , vol.36 , Issue.9 , pp. 11402-11417
    • Abdou, H.1
  • 4
    • 70350266119 scopus 로고    scopus 로고
    • Credit scoring and decision-making in Egyptian public sector banks
    • Abdou H, Pointon J. 2009. Credit scoring and decision-making in Egyptian public sector banks. International Journal of Managerial Finance 5(4): 391–406.
    • (2009) International Journal of Managerial Finance , vol.5 , Issue.4 , pp. 391-406
    • Abdou, H.1    Pointon, J.2
  • 5
    • 45049088395 scopus 로고    scopus 로고
    • Neural nets versus conventional techniques in credit scoring in Egyptian banking
    • Abdou H, Pointon J, El Masry A. 2008. Neural nets versus conventional techniques in credit scoring in Egyptian banking. Expert Systems with Applications 35(3): 1275–1292.
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 1275-1292
    • Abdou, H.1    Pointon, J.2    El Masry, A.3
  • 6
    • 0005814645 scopus 로고    scopus 로고
    • An empirical investigation and comparison of neural networks and regression for scanner data analysis
    • Ainscough TL, Aronson JE. 1999. An empirical investigation and comparison of neural networks and regression for scanner data analysis. Journal of Retailing and Consumer Services 6(4): 205–217.
    • (1999) Journal of Retailing and Consumer Services , vol.6 , Issue.4 , pp. 205-217
    • Ainscough, T.L.1    Aronson, J.E.2
  • 8
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman EI. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance XXIII(4): 589–609.
    • (1968) The Journal of Finance , vol.XXIII , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 9
    • 29244449344 scopus 로고    scopus 로고
    • An emerging market credit scoring system for corporate bonds
    • Altman EI. 2005. An emerging market credit scoring system for corporate bonds. Emerging Markets Review 6(4): 311–323.
    • (2005) Emerging Markets Review , vol.6 , Issue.4 , pp. 311-323
    • Altman, E.I.1
  • 10
    • 0040731075 scopus 로고
    • Corporate credit scoring models: approaches and tests for successful implementation
    • Altman EI, Haldeman R. 1995. Corporate credit scoring models: approaches and tests for successful implementation. Journal of Commercial Lending 77(9): 10–22.
    • (1995) Journal of Commercial Lending , vol.77 , Issue.9 , pp. 10-22
    • Altman, E.I.1    Haldeman, R.2
  • 11
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience)
    • Altman EI, Marco G, Varetto F. 1994. Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance 18(3): 505–529.
    • (1994) Journal of Banking and Finance , vol.18 , Issue.3 , pp. 505-529
    • Altman, E.I.1    Marco, G.2    Varetto, F.3
  • 14
    • 33748674635 scopus 로고    scopus 로고
    • European genetic scoring models using survival analysis
    • Andreeva G. 2006. European genetic scoring models using survival analysis. Journal of the Operational Research Society 57(10): 1180–1187.
    • (2006) Journal of the Operational Research Society , vol.57 , Issue.10 , pp. 1180-1187
    • Andreeva, G.1
  • 15
    • 0031521799 scopus 로고    scopus 로고
    • Analyzing credit risk data: a comparison of logistic discriminant, classification tree analysis, and feedforward networks
    • Arminger G, Enache D, Bonne T. 1997. Analyzing credit risk data: a comparison of logistic discriminant, classification tree analysis, and feedforward networks. Computational Statistics 12(2): 293–310.
    • (1997) Computational Statistics , vol.12 , Issue.2 , pp. 293-310
    • Arminger, G.1    Enache, D.2    Bonne, T.3
  • 16
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: a survey and new results
    • Atiya AF. 2001. Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Transactions on Neural Networks 12(4): 929–935.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.F.1
  • 20
    • 13444313309 scopus 로고    scopus 로고
    • Credit risk modeling strategies: the road to serfdom? Intelligent Systems in Accounting
    • Baestaens D-E. 1999. Credit risk modeling strategies: the road to serfdom? Intelligent Systems in Accounting, Finance and Management 8(4): 225–235.
    • (1999) Finance and Management , vol.8 , Issue.4 , pp. 225-235
    • Baestaens, D.-E.1
  • 24
    • 34447098980 scopus 로고    scopus 로고
    • Reject inference, augmentation, and sample selection
    • Banasik J, Crook J. 2007. Reject inference, augmentation, and sample selection. European Journal of Operational Research 183(3): 1582–1594.
    • (2007) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1582-1594
    • Banasik, J.1    Crook, J.2
  • 25
    • 76849095324 scopus 로고    scopus 로고
    • Reject inference in survival analysis by augmentation
    • Banasik J, Crook J. 2010 Reject inference in survival analysis by augmentation. Journal of Operational Research Society 61(3): 473–458.
    • (2010) Journal of Operational Research Society , vol.61 , Issue.3 , pp. 473-458
    • Banasik, J.1    Crook, J.2
  • 28
    • 33847618299 scopus 로고    scopus 로고
    • Classification of patients with pain based on neuropathic pain symptoms: comparison of an artificial neural network against an established scoring system
    • Behrman M, Linder R, Assadi AH, Stacey BR, Backonja MM. 2007. Classification of patients with pain based on neuropathic pain symptoms: comparison of an artificial neural network against an established scoring system. European Journal of Pain 11(4): 370–376.
    • (2007) European Journal of Pain , vol.11 , Issue.4 , pp. 370-376
    • Behrman, M.1    Linder, R.2    Assadi, A.H.3    Stacey, B.R.4    Backonja, M.M.5
  • 29
    • 56349130760 scopus 로고    scopus 로고
    • Support vector machines for credit scoring and discovery of significant features
    • Bellotti T, Crook J. 2009. Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications 36(2/2): 3302–3308.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2-2 , pp. 3302-3308
    • Bellotti, T.1    Crook, J.2
  • 30
    • 58349110098 scopus 로고    scopus 로고
    • Accuracy of machine learning models versus ‘hand crafted’ expert systems – a credit scoring case study
    • Ben-David A, Frank E. 2009. Accuracy of machine learning models versus ‘hand crafted’ expert systems – a credit scoring case study. Expert Systems with Applications 36(3): 5264–5271.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5264-5271
    • Ben-David, A.1    Frank, E.2
  • 31
    • 40949164505 scopus 로고    scopus 로고
    • Modelling small-business credit scoring by using logistic regression, neural networks and decision trees
    • Bensic M, Sarlija N, Zekic-Susac M. 2005. Modelling small-business credit scoring by using logistic regression, neural networks and decision trees. Intelligent Systems in Accounting, Finance and Management 13(3): 133–150.
    • (2005) Intelligent Systems in Accounting, Finance and Management , vol.13 , Issue.3 , pp. 133-150
    • Bensic, M.1    Sarlija, N.2    Zekic-Susac, M.3
  • 32
    • 33846318144 scopus 로고    scopus 로고
    • Optimizing object classification under ambiguity/ignorance: application to the credit rating problem
    • Beynon MJ. 2005. Optimizing object classification under ambiguity/ignorance: application to the credit rating problem. Intelligent Systems in Accounting, Finance and Management 13(2): 113–130.
    • (2005) Intelligent Systems in Accounting, Finance and Management , vol.13 , Issue.2 , pp. 113-130
    • Beynon, M.J.1
  • 35
    • 0029492199 scopus 로고
    • Effectiveness of neural network types for prediction of business failure
    • Boritz JE, Kennedy DB. 1995. Effectiveness of neural network types for prediction of business failure. Expert Systems with Applications 9(4): 503–512.
    • (1995) Expert Systems with Applications , vol.9 , Issue.4 , pp. 503-512
    • Boritz, J.E.1    Kennedy, D.B.2
  • 36
    • 13044262094 scopus 로고
    • An econometric analysis of the bank credit scoring problem
    • Boyes WJ, Hoffman DL, Low SA. 1989. An econometric analysis of the bank credit scoring problem. Journal of Econometrics 40(1): 3–14.
    • (1989) Journal of Econometrics , vol.40 , Issue.1 , pp. 3-14
    • Boyes, W.J.1    Hoffman, D.L.2    Low, S.A.3
  • 37
    • 0004536889 scopus 로고
    • Methods for credit scoring applied to slow payers
    • Thomas LC, Crook JN, Edelman DB, (eds)., Oxford University Press, Oxford
    • Boyle M, Crook JN, Hamilton R, Thomas LC. 1992. Methods for credit scoring applied to slow payers. In Credit Scoring and Credit Control, Thomas LC, Crook JN, Edelman DB (eds). Oxford University Press: Oxford; 75–90.
    • (1992) Credit Scoring and Credit Control , pp. 75-90
    • Boyle, M.1    Crook, J.N.2    Hamilton, R.3    Thomas, L.C.4
  • 39
    • 70350303313 scopus 로고    scopus 로고
    • Count data models for financial data
    • Maddala GS, Rao CR, (eds),, Handbook of Statistics, North-Holland, Amsterdam
    • Cameron AC, Trivedi PK. 1996. Count data models for financial data. In Statistical Methods in Finance, Maddala GS, Rao CR (eds), Handbook of Statistics, vol. 14. North-Holland: Amsterdam; 363–391.
    • (1996) Statistical Methods in Finance , vol.14 , pp. 363-391
    • Cameron, A.C.1    Trivedi, P.K.2
  • 41
    • 0003603676 scopus 로고
    • Credit scoring systems: a critical analysis
    • Capon N. 1982. Credit scoring systems: a critical analysis. Journal of Marketing 46(2): 82–91.
    • (1982) Journal of Marketing , vol.46 , Issue.2 , pp. 82-91
    • Capon, N.1
  • 42
    • 13444302900 scopus 로고    scopus 로고
    • Deregulation, technology change, and the business-lending performance of large and small banks
    • Carter DA, McNulty JE. 2005. Deregulation, technology change, and the business-lending performance of large and small banks. Journal of Banking and Finance 29(5): 1113–1130.
    • (2005) Journal of Banking and Finance , vol.29 , Issue.5 , pp. 1113-1130
    • Carter, D.A.1    McNulty, J.E.2
  • 44
    • 0040911826 scopus 로고
    • A comparative analysis of empirical vs. judgemental credit evaluation
    • Chandler GG, Coffman JY. 1979. A comparative analysis of empirical vs. judgemental credit evaluation. The Journal of Retail Banking 1(2): 15–26.
    • (1979) The Journal of Retail Banking , vol.1 , Issue.2 , pp. 15-26
    • Chandler, G.G.1    Coffman, J.Y.2
  • 45
    • 0037401347 scopus 로고    scopus 로고
    • Credit scoring and rejected instances reassigning through evolutionary computation techniques
    • Chen M, Huang S. 2003. Credit scoring and rejected instances reassigning through evolutionary computation techniques. Expert Systems with Applications 24(4): 433–441.
    • (2003) Expert Systems with Applications , vol.24 , Issue.4 , pp. 433-441
    • Chen, M.1    Huang, S.2
  • 46
    • 57349162800 scopus 로고    scopus 로고
    • Two stages credit evaluation in bank loan appraisal
    • Chen Y, Guo R-J, Huang R-L. 2009. Two stages credit evaluation in bank loan appraisal. Economic Modelling 26(1): 63–70.
    • (2009) Economic Modelling , vol.26 , Issue.1 , pp. 63-70
    • Chen, Y.1    Guo, R.-J.2    Huang, R.-L.3
  • 47
    • 29144462507 scopus 로고    scopus 로고
    • Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regression
    • Chiang WK, Zhang D, Zhou L. 2006. Predicting and explaining patronage behavior toward web and traditional stores using neural networks: a comparative analysis with logistic regression. Decision Support Systems 41(2): 514–531.
    • (2006) Decision Support Systems , vol.41 , Issue.2 , pp. 514-531
    • Chiang, W.K.1    Zhang, D.2    Zhou, L.3
  • 48
    • 56349109114 scopus 로고    scopus 로고
    • Constructing a reassigning credit scoring model
    • Chuang C, Lin R. 2009. Constructing a reassigning credit scoring model. Expert Systems with Applications 36(2/1): 1685–1694.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2-1 , pp. 1685-1694
    • Chuang, C.1    Lin, R.2
  • 50
    • 4344627285 scopus 로고    scopus 로고
    • Scoring bank loans that may go wrong: a case study
    • Cramer JS. 2004. Scoring bank loans that may go wrong: a case study. Statistica Neerlandica 58(3): 365–380.
    • (2004) Statistica Neerlandica , vol.58 , Issue.3 , pp. 365-380
    • Cramer, J.S.1
  • 53
    • 0001344011 scopus 로고
    • Comparing the predictive performance of a neural network model with some traditional market response models
    • Dasgupta CG, Dispensa GS, Ghose S. 1994. Comparing the predictive performance of a neural network model with some traditional market response models. International Journal of Forecasting 10(2): 235–244.
    • (1994) International Journal of Forecasting , vol.10 , Issue.2 , pp. 235-244
    • Dasgupta, C.G.1    Dispensa, G.S.2    Ghose, S.3
  • 54
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D, Walker G, Kadam A. 2005. Predicting breast cancer survivability: a comparison of three data mining methods. Artificial Intelligence in Medicine 34(2): 113–127.
    • (2005) Artificial Intelligence in Medicine , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 55
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in the credit union environment
    • Desai VS, Crook JN, Overstreet GA. 1996. A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research 95(1): 24–37.
    • (1996) European Journal of Operational Research , vol.95 , Issue.1 , pp. 24-37
    • Desai, V.S.1    Crook, J.N.2    Overstreet, G.A.3
  • 62
    • 0028446878 scopus 로고
    • Decision support in non-conservative domains: generalization with neural networks
    • Dutta S, Shekhar S, Wong WY. 1994. Decision support in non-conservative domains: generalization with neural networks. Decision Support Systems 11(5): 527–544.
    • (1994) Decision Support Systems , vol.11 , Issue.5 , pp. 527-544
    • Dutta, S.1    Shekhar, S.2    Wong, W.Y.3
  • 63
    • 33646950425 scopus 로고    scopus 로고
    • Critical managerial factors affecting defense projects success: a comparison between neural network and regression analysis
    • Dvir D, Ben-David A, Sadeh A, Shenhar AJ. 2006. Critical managerial factors affecting defense projects success: a comparison between neural network and regression analysis. Engineering Applications of Artificial Intelligence 19(5): 535–543.
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.5 , pp. 535-543
    • Dvir, D.1    Ben-David, A.2    Sadeh, A.3    Shenhar, A.J.4
  • 64
    • 84977404808 scopus 로고
    • Pitfalls in the application of discriminant analysis in business, finance, and economics
    • Eisenbeis RA. 1977. Pitfalls in the application of discriminant analysis in business, finance, and economics. Journal of Banking and Finance 32(3): 875–900.
    • (1977) Journal of Banking and Finance , vol.32 , Issue.3 , pp. 875-900
    • Eisenbeis, R.A.1
  • 65
    • 0001106153 scopus 로고
    • Problems in applying discriminant analysis in credit scoring models
    • Eisenbeis RA. 1978. Problems in applying discriminant analysis in credit scoring models. Journal of Banking and Finance 2(3): 205–219.
    • (1978) Journal of Banking and Finance , vol.2 , Issue.3 , pp. 205-219
    • Eisenbeis, R.A.1
  • 68
    • 56749173517 scopus 로고    scopus 로고
    • A genetic programming model for bankruptcy prediction: empirical evidence from Iran
    • Etemadi H, Rostamy A, Dehkordi H. 2009. A genetic programming model for bankruptcy prediction: empirical evidence from Iran. Expert Systems with Applications 36(2/2): 3199–3207.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2-2 , pp. 3199-3207
    • Etemadi, H.1    Rostamy, A.2    Dehkordi, H.3
  • 69
    • 85164951325 scopus 로고
    • Credit scoring by enlarged discriminant model. Omega – The International Journal of
    • Falbo P. 1991. Credit scoring by enlarged discriminant model. Omega – The International Journal of Management Science 19(4): 35–54.
    • (1991) Management Science , vol.19 , Issue.4 , pp. 35-54
    • Falbo, P.1
  • 71
    • 0036611175 scopus 로고    scopus 로고
    • Digitizing uncertainty modeling for reverse engineering applications: Regression versus neural networks
    • Feng C-X, Wang X. 2002. Digitizing uncertainty modeling for reverse engineering applications: Regression versus neural networks. Journal of Intelligent Manufacturing 13(3): 189–199.
    • (2002) Journal of Intelligent Manufacturing , vol.13 , Issue.3 , pp. 189-199
    • Feng, C.-X.1    Wang, X.2
  • 72
    • 0004116672 scopus 로고
    • Cambridge University Press, Cambridge
    • Finney PJ. 1952. Probit Analysis. Cambridge University Press: Cambridge.
    • (1952) Probit Analysis
    • Finney, P.J.1
  • 73
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher RA. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7(2): 179–188.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 74
    • 0000152448 scopus 로고
    • Forecasting with neural networks: an application using bankruptcy data
    • Fletcher D, Goss E. 1993. Forecasting with neural networks: an application using bankruptcy data. Information and Management 24(3): 159–167.
    • (1993) Information and Management , vol.24 , Issue.3 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 75
    • 0008829309 scopus 로고    scopus 로고
    • Multiple banking relationships and the fragility of corporate borrowers
    • Foglia A, Laviola S, Reedtz P. 1998. Multiple banking relationships and the fragility of corporate borrowers. Journal of Banking and Finance 22(10–11): 1441–1456.
    • (1998) Journal of Banking and Finance , vol.22 , Issue.10-11 , pp. 1441-1456
    • Foglia, A.1    Laviola, S.2    Reedtz, P.3
  • 77
    • 85040399459 scopus 로고    scopus 로고
    • Credit scoring and the availability of small business credit in low-and moderate-income areas
    • Frame W, Padhi M, Woosley L. 2004. Credit scoring and the availability of small business credit in low-and moderate-income areas. The Financial Review 39(1): 35–54.
    • (2004) The Financial Review , vol.39 , Issue.1 , pp. 35-54
    • Frame, W.1    Padhi, M.2    Woosley, L.3
  • 81
    • 0035281381 scopus 로고    scopus 로고
    • Classification accuracy in discriminant analysis: a mixed integer programming approach
    • Glen J. 2001. Classification accuracy in discriminant analysis: a mixed integer programming approach. Journal of the Operational Research Society 52(3): 328–339.
    • (2001) Journal of the Operational Research Society , vol.52 , Issue.3 , pp. 328-339
    • Glen, J.1
  • 83
    • 0000832710 scopus 로고
    • Probit and discriminant functions for classifying credit applicants: a comparison
    • Grablowsky BJ, Talley WK. 1981. Probit and discriminant functions for classifying credit applicants: a comparison. Journal of Economic and Business 33(3): 254–261.
    • (1981) Journal of Economic and Business , vol.33 , Issue.3 , pp. 254-261
    • Grablowsky, B.J.1    Talley, W.K.2
  • 84
    • 0039758355 scopus 로고    scopus 로고
    • Sample selection in credit scoring models
    • Greene W. 1998. Sample selection in credit scoring models. Japan and the World Economy 10(3): 299–316.
    • (1998) Japan and the World Economy , vol.10 , Issue.3 , pp. 299-316
    • Greene, W.1
  • 85
    • 85164926216 scopus 로고
    • In The European Conference Series in Quantitative Economics and Econometrics on Econometrics of Duration, Count and Transition Models, Paris
    • Guillen M, Artis M. 1992. Count data models for a credit scoring system. In The European Conference Series in Quantitative Economics and Econometrics on Econometrics of Duration, Count and Transition Models, Paris.
    • (1992) Count data models for a credit scoring system
    • Guillen, M.1    Artis, M.2
  • 91
    • 0032064760 scopus 로고    scopus 로고
    • Discriminant analysis when the classes arise from a continuum
    • Hand DJ, Oliver JJ, Lunn AD. 1998. Discriminant analysis when the classes arise from a continuum. Pattern Recognition 31(5): 641–650.
    • (1998) Pattern Recognition , vol.31 , Issue.5 , pp. 641-650
    • Hand, D.J.1    Oliver, J.J.2    Lunn, A.D.3
  • 93
    • 0028401084 scopus 로고
    • Predicting graduate student success: a comparison of neural networks and traditional techniques
    • Hardgrave BC, Wilson RL, Walstrom KA. 1994. Predicting graduate student success: a comparison of neural networks and traditional techniques. Computers and Operations Research 29(30): 249–263.
    • (1994) Computers and Operations Research , vol.29 , Issue.30 , pp. 249-263
    • Hardgrave, B.C.1    Wilson, R.L.2    Walstrom, K.A.3
  • 94
    • 51249090300 scopus 로고    scopus 로고
    • Juvenile delinquent mortgages: bad credit or bad economy?
    • Haughwout A, Peach R, Tracy J. 2008. Juvenile delinquent mortgages: bad credit or bad economy? Journal of Urban Economics 64(2): 246–257.
    • (2008) Journal of Urban Economics , vol.64 , Issue.2 , pp. 246-257
    • Haughwout, A.1    Peach, R.2    Tracy, J.3
  • 96
    • 10244259944 scopus 로고    scopus 로고
    • John Wiley and Sons, Ltd, Chichester
    • Heffernan S. 2005. Modern Banking. John Wiley and Sons, Ltd: Chichester.
    • (2005) Modern Banking
    • Heffernan, S.1
  • 97
    • 0036888053 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for estimating software development effort
    • Heiat A. 2002. Comparison of artificial neural network and regression models for estimating software development effort. Information and Software Technology 44(15): 911–922.
    • (2002) Information and Software Technology , vol.44 , Issue.15 , pp. 911-922
    • Heiat, A.1
  • 99
    • 1542603058 scopus 로고    scopus 로고
    • A k-nearest-neighbour classifier for assessing consumer credit risk
    • Henley WE, Hand DJ. 1996. A k-nearest-neighbour classifier for assessing consumer credit risk. The Statistician 45(1): 77–95.
    • (1996) The Statistician , vol.45 , Issue.1 , pp. 77-95
    • Henley, W.E.1    Hand, D.J.2
  • 100
    • 0035624331 scopus 로고    scopus 로고
    • Credit scoring and mortgage securitization: implications for mortgage rates and credit availability
    • Heuson A, Passmore W, Sparks R. 2001. Credit scoring and mortgage securitization: implications for mortgage rates and credit availability. Journal of Real Estate Finance and Economics 23(3): 337–363.
    • (2001) Journal of Real Estate Finance and Economics , vol.23 , Issue.3 , pp. 337-363
    • Heuson, A.1    Passmore, W.2    Sparks, R.3
  • 101
    • 0028445840 scopus 로고
    • Neural network models for intelligent support of managerial decision making
    • Hill T, Remus W. 1994. Neural network models for intelligent support of managerial decision making. Decision Support Systems 11(5): 449–459.
    • (1994) Decision Support Systems , vol.11 , Issue.5 , pp. 449-459
    • Hill, T.1    Remus, W.2
  • 104
    • 4544253224 scopus 로고    scopus 로고
    • An integrated data mining and behavioral scoring model for analysing bank customers
    • Hsieh N-C. 2004. An integrated data mining and behavioral scoring model for analysing bank customers. Expert Systems with Applications 27(4): 623–633.
    • (2004) Expert Systems with Applications , vol.27 , Issue.4 , pp. 623-633
    • Hsieh, N.-C.1
  • 105
    • 44149122418 scopus 로고    scopus 로고
    • Incorporating a non-additive decision making method into multi-layer neural networks and its application to financial distress analysis
    • Hu Y. 2008. Incorporating a non-additive decision making method into multi-layer neural networks and its application to financial distress analysis. Knowledge-Based Systems 21(5): 383–390.
    • (2008) Knowledge-Based Systems , vol.21 , Issue.5 , pp. 383-390
    • Hu, Y.1
  • 106
    • 34447124447 scopus 로고    scopus 로고
    • Measuring retail company performance using credit scoring techniques
    • Hu Y-C, Ansell J. 2007. Measuring retail company performance using credit scoring techniques. European Journal of Operational Research 183(3): 1595–1606.
    • (2007) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1595-1606
    • Hu, Y.-C.1    Ansell, J.2
  • 107
    • 33644600030 scopus 로고    scopus 로고
    • Two-stage genetic programming (2SGP) for the credit scoring model
    • Huang J, Tzeng G, Ong C. 2006. Two-stage genetic programming (2SGP) for the credit scoring model. Applied Mathematics and Computation 174(2): 1039–1053.
    • (2006) Applied Mathematics and Computation , vol.174 , Issue.2 , pp. 1039-1053
    • Huang, J.1    Tzeng, G.2    Ong, C.3
  • 108
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • Huang C, Chen M, Wang C. 2007. Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications 33(4): 847–856.
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 847-856
    • Huang, C.1    Chen, M.2    Wang, C.3
  • 111
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural network and discriminant analysis
    • Jo H, Han I, Lee H. 1997. Bankruptcy prediction using case-based reasoning, neural network and discriminant analysis. Expert Systems with Applications 13(2): 97–108.
    • (1997) Expert Systems with Applications , vol.13 , Issue.2 , pp. 97-108
    • Jo, H.1    Han, I.2    Lee, H.3
  • 113
    • 1442286182 scopus 로고    scopus 로고
    • Managing loan customers using misclassification patterns of credit scoring model
    • Kim YS, Sohn SY. 2004. Managing loan customers using misclassification patterns of credit scoring model. Expert Systems with Applications 26(4): 567–573.
    • (2004) Expert Systems with Applications , vol.26 , Issue.4 , pp. 567-573
    • Kim, Y.S.1    Sohn, S.Y.2
  • 116
    • 0036038369 scopus 로고    scopus 로고
    • Nozzle wear rate prediction using regression and neural network
    • Krishnaswamy M, Krishnan P. 2002. Nozzle wear rate prediction using regression and neural network. Biosystems Engineering 82(1): 53–64.
    • (2002) Biosystems Engineering , vol.82 , Issue.1 , pp. 53-64
    • Krishnaswamy, M.1    Krishnan, P.2
  • 117
    • 85164956053 scopus 로고    scopus 로고
    • Reengineering the lending procedure for small businesses: a case study
    • Kumar A, Motwani J. 1999. Reengineering the lending procedure for small businesses: a case study. Work Study 48(1): 6–12.
    • (1999) Work Study , vol.48 , Issue.1 , pp. 6-12
    • Kumar, A.1    Motwani, J.2
  • 118
    • 0001395037 scopus 로고
    • An empirical comparison of neural network and logistic regression models
    • Kumar A, Rao VR, Soni H. 1995. An empirical comparison of neural network and logistic regression models. Marketing Letters 6(4): 251–263.
    • (1995) Marketing Letters , vol.6 , Issue.4 , pp. 251-263
    • Kumar, A.1    Rao, V.R.2    Soni, H.3
  • 119
    • 30944439854 scopus 로고    scopus 로고
    • Assessing a knowledge-based approach to commercial loan underwriting
    • Kumra R, Stein R, Assersohn I. 2006. Assessing a knowledge-based approach to commercial loan underwriting. Expert Systems with Applications 30(3): 507–518.
    • (2006) Expert Systems with Applications , vol.30 , Issue.3 , pp. 507-518
    • Kumra, R.1    Stein, R.2    Assersohn, I.3
  • 120
    • 34347219423 scopus 로고    scopus 로고
    • Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring
    • Laha A. 2007. Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring. Advanced Engineering Informatics 21(3): 281–291.
    • (2007) Advanced Engineering Informatics , vol.21 , Issue.3 , pp. 281-291
    • Laha, A.1
  • 121
    • 33750430829 scopus 로고    scopus 로고
    • Robust neural modelling for the cross-sectional analysis of accounting information
    • Landajo M, Andres JD, Lorca P. 2007. Robust neural modelling for the cross-sectional analysis of accounting information. European Journal of Operational Research 177(2): 1232–1252.
    • (2007) European Journal of Operational Research , vol.177 , Issue.2 , pp. 1232-1252
    • Landajo, M.1    Andres, J.D.2    Lorca, P.3
  • 122
    • 16244365542 scopus 로고    scopus 로고
    • A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms
    • Lee K, Booth D, Alam P. 2005. A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications 29(1): 1–16.
    • (2005) Expert Systems with Applications , vol.29 , Issue.1 , pp. 1-16
    • Lee, K.1    Booth, D.2    Alam, P.3
  • 123
    • 17844382437 scopus 로고    scopus 로고
    • A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
    • Lee T, Chen I. 2005. A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications 28(4): 743–752.
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 743-752
    • Lee, T.1    Chen, I.2
  • 124
    • 2342584231 scopus 로고    scopus 로고
    • Forecasting creditworthiness: logistic vs. artificial neural net. The
    • Lee TH, Jung S. 2000. Forecasting creditworthiness: logistic vs. artificial neural net. The Journal of Business Forecasting Methods and Systems 18(4): 28–30.
    • (2000) Journal of Business Forecasting Methods and Systems , vol.18 , Issue.4 , pp. 28-30
    • Lee, T.H.1    Jung, S.2
  • 125
    • 0036776547 scopus 로고    scopus 로고
    • Credit scoring using the hybrid neural discriminant technique
    • Lee T, Chiu C, Lu C, Chen I. 2002. Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications 23(3): 245–254.
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 245-254
    • Lee, T.1    Chiu, C.2    Lu, C.3    Chen, I.4
  • 126
    • 84990571875 scopus 로고
    • The application of neural networks and a qualitative response model to the auditor's going concern uncertainty decision
    • Lenard MJ, Alam P, Madey GR. 1995. The application of neural networks and a qualitative response model to the auditor's going concern uncertainty decision. Decision Sciences 26(2): 209–227.
    • (1995) Decision Sciences , vol.26 , Issue.2 , pp. 209-227
    • Lenard, M.J.1    Alam, P.2    Madey, G.R.3
  • 127
    • 25444506678 scopus 로고    scopus 로고
    • Bankruptcy theory development and classification via genetic programming
    • Lensberg T, Eilifsen A, McKee T. 2006. Bankruptcy theory development and classification via genetic programming. European Journal of Operational Research 169(2): 677–697.
    • (2006) European Journal of Operational Research , vol.169 , Issue.2 , pp. 677-697
    • Lensberg, T.1    Eilifsen, A.2    McKee, T.3
  • 128
    • 77958402003 scopus 로고
    • Credit scoring models for the evaluation of small-business loan applications
    • Leonard KJ. 1992. Credit scoring models for the evaluation of small-business loan applications. IMA Journal of Mathematics Applied in Business and Industry 4(1): 89–95.
    • (1992) IMA Journal of Mathematics Applied in Business and Industry , vol.4 , Issue.1 , pp. 89-95
    • Leonard, K.J.1
  • 129
    • 0040911818 scopus 로고
    • Detecting credit card fraud using expert systems
    • Leonard KJ. 1993. Detecting credit card fraud using expert systems. Computers and Industrial Engineering 25(1–4): 103–106.
    • (1993) Computers and Industrial Engineering , vol.25 , Issue.1-4 , pp. 103-106
    • Leonard, K.J.1
  • 130
    • 0004971232 scopus 로고
    • The development of credit scoring quality measures for consumer credit application
    • Leonard KJ. 1995. The development of credit scoring quality measures for consumer credit application. International Journal of Quality and Reliability Management 12(4): 79–85.
    • (1995) International Journal of Quality and Reliability Management , vol.12 , Issue.4 , pp. 79-85
    • Leonard, K.J.1
  • 131
    • 23744434509 scopus 로고    scopus 로고
    • Information systems and benchmarking in the credit scoring industry
    • Leonard KJ. 1996. Information systems and benchmarking in the credit scoring industry. Benchmarking for Quality Management and Technology 3(1): 38–44.
    • (1996) Benchmarking for Quality Management and Technology , vol.3 , Issue.1 , pp. 38-44
    • Leonard, K.J.1
  • 132
    • 0030110988 scopus 로고    scopus 로고
    • Neural network prediction analysis: the bankruptcy case
    • Leshno M, Spector Y. 1996. Neural network prediction analysis: the bankruptcy case. Neurocomputing 10(2): 125–147.
    • (1996) Neurocomputing , vol.10 , Issue.2 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 134
    • 45049087958 scopus 로고    scopus 로고
    • Corporate financial distress diagnosis in China: empirical analysis using credit scoring models
    • Liang Q. 2003. Corporate financial distress diagnosis in China: empirical analysis using credit scoring models. Hitotsubashi Journal of Commerce and Management 38(1): 13–28.
    • (2003) Hitotsubashi Journal of Commerce and Management , vol.38 , Issue.1 , pp. 13-28
    • Liang, Q.1
  • 136
    • 53849087428 scopus 로고    scopus 로고
    • An analysis of credit scoring for agricultural loans in Thailand
    • Limsombunchai V, Gan C, Lee M. 2005. An analysis of credit scoring for agricultural loans in Thailand. American Journal of Applied Sciences 2(8): 1198–1205.
    • (2005) American Journal of Applied Sciences , vol.2 , Issue.8 , pp. 1198-1205
    • Limsombunchai, V.1    Gan, C.2    Lee, M.3
  • 138
    • 38249034725 scopus 로고
    • The bootstrapped – lessons for the acceptance of intellectual technology
    • Lovie AD. 1987. The bootstrapped – lessons for the acceptance of intellectual technology. Applied Ergonomics 18(3): 201–206.
    • (1987) Applied Ergonomics , vol.18 , Issue.3 , pp. 201-206
    • Lovie, A.D.1
  • 139
    • 0039725810 scopus 로고
    • Updating scorecards: removing the mystique
    • Thomas LC, Crook JN, Edelman DB, (eds)., Oxford University Press, Oxford
    • Lucas A. 1992. Updating scorecards: removing the mystique. In Credit Scoring and Credit Control, Thomas LC, Crook JN, Edelman DB (eds). Oxford University Press: Oxford; 180–197.
    • (1992) Credit Scoring and Credit Control , pp. 180-197
    • Lucas, A.1
  • 143
    • 33646263446 scopus 로고    scopus 로고
    • Glenlake Publishing Company, Ltd, Chicago, IL
    • Mays E. 2001. Handbook of Credit Scoring. Glenlake Publishing Company, Ltd: Chicago, IL.
    • (2001) Handbook of Credit Scoring
    • Mays, E.1
  • 144
    • 45049087018 scopus 로고    scopus 로고
    • The rule of credit scores in consumer lending
    • Mays E, (ed.)., Thomson South-Western, Australia
    • Mays E. 2004. The rule of credit scores in consumer lending. In Credit Scoring for Risk Managers: The Handbook for Lenders, Mays E (ed.). Thomson South-Western: Australia; 3–12.
    • (2004) Credit Scoring for Risk Managers: The Handbook for Lenders , pp. 3-12
    • Mays, E.1
  • 145
    • 0037117685 scopus 로고    scopus 로고
    • Genetic programming and rough sets: a hybrid approach to bankruptcy classification
    • McKee T, Lensberg T. 2002. Genetic programming and rough sets: a hybrid approach to bankruptcy classification. European Journal of Operational Research 138(2): 436–451.
    • (2002) European Journal of Operational Research , vol.138 , Issue.2 , pp. 436-451
    • McKee, T.1    Lensberg, T.2
  • 146
    • 58749088971 scopus 로고    scopus 로고
    • A binary classification method for bankruptcy prediction
    • Min JH, Jeong C. 2009. A binary classification method for bankruptcy prediction. Expert Systems with Applications 36(3): 5256–5263.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5256-5263
    • Min, J.H.1    Jeong, C.2
  • 147
    • 48749131225 scopus 로고    scopus 로고
    • A practical approach to credit scoring
    • Min JH, Lee Y-C. 2008. A practical approach to credit scoring. Expert Systems with Applications 35(4): 1762–1770.
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1762-1770
    • Min, J.H.1    Lee, Y.-C.2
  • 150
    • 14544280206 scopus 로고    scopus 로고
    • Inflation forecasting using a neural network
    • Nakamura E. 2005. Inflation forecasting using a neural network. Economics Letters 86(3): 373–378.
    • (2005) Economics Letters , vol.86 , Issue.3 , pp. 373-378
    • Nakamura, E.1
  • 151
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • Nanni L, Lumini A. 2009. An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications 36(2/2): 3028–3033.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2-2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 152
    • 0031209593 scopus 로고    scopus 로고
    • Determining the saliency of input variables in neural network classifiers
    • Nath R, Rajagopalan B, Ryker R. 1997. Determining the saliency of input variables in neural network classifiers. Computers and Operations Researches 24(8): 767–773.
    • (1997) Computers and Operations Researches , vol.24 , Issue.8 , pp. 767-773
    • Nath, R.1    Rajagopalan, B.2    Ryker, R.3
  • 154
    • 0036319886 scopus 로고    scopus 로고
    • Comparison of prediction models for adverse outcome in pediatric meningococcal disease using artificial neural network and logistic regression analyses
    • Nguyen T, Malley R, Inkelis SH, Kuppermann N. 2002. Comparison of prediction models for adverse outcome in pediatric meningococcal disease using artificial neural network and logistic regression analyses. Journal of Clinical Epidemiology 55(7): 687–695.
    • (2002) Journal of Clinical Epidemiology , vol.55 , Issue.7 , pp. 687-695
    • Nguyen, T.1    Malley, R.2    Inkelis, S.H.3    Kuppermann, N.4
  • 155
    • 33846297335 scopus 로고    scopus 로고
    • Forecasting with cue information: a comparison of multiple regression with alternative forecasting approaches
    • Nikolopoulos K, Goodwin P, Patelis A, Assimakopoulos V. 2007. Forecasting with cue information: a comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research 180(1): 354–368.
    • (2007) European Journal of Operational Research , vol.180 , Issue.1 , pp. 354-368
    • Nikolopoulos, K.1    Goodwin, P.2    Patelis, A.3    Assimakopoulos, V.4
  • 156
    • 85014171951 scopus 로고    scopus 로고
    • Trading systems designed by genetic algorithms
    • Núñez-Letamendia L. 2002. Trading systems designed by genetic algorithms. Managerial Finance 28(8): 87–106.
    • (2002) Managerial Finance , vol.28 , Issue.8 , pp. 87-106
    • Núñez-Letamendia, L.1
  • 157
    • 16244405300 scopus 로고    scopus 로고
    • Building credit scoring models using genetic programming
    • Ong C, Huang J, Tzeng G. 2005. Building credit scoring models using genetic programming. Expert Systems with Applications 29(1): 41–47.
    • (2005) Expert Systems with Applications , vol.29 , Issue.1 , pp. 41-47
    • Ong, C.1    Huang, J.2    Tzeng, G.3
  • 158
    • 0000884306 scopus 로고
    • A credit scoring model for commercial loans
    • Orgler YE. 1970. A credit scoring model for commercial loans. Journal of Money, Credit and Banking II(4): 435–445.
    • (1970) Journal of Money, Credit and Banking , vol.II , Issue.4 , pp. 435-445
    • Orgler, Y.E.1
  • 159
    • 0039133461 scopus 로고
    • Evaluation of bank consumer loans with credit scoring models
    • Orgler YE. 1971. Evaluation of bank consumer loans with credit scoring models. Journal of Bank Research 2(1): 31–37.
    • (1971) Journal of Bank Research , vol.2 , Issue.1 , pp. 31-37
    • Orgler, Y.E.1
  • 160
    • 4544258100 scopus 로고    scopus 로고
    • Comparison of logistic regression and neural network analysis applied to predicting living setting after hip fracture
    • Ottenbacher KJ, Smith PM, Illig SB, Linn RT, Mancuso M, Granger CV. 2004. Comparison of logistic regression and neural network analysis applied to predicting living setting after hip fracture. Annals of Epidemiology 14(8): 551–559.
    • (2004) Annals of Epidemiology , vol.14 , Issue.8 , pp. 551-559
    • Ottenbacher, K.J.1    Smith, P.M.2    Illig, S.B.3    Linn, R.T.4    Mancuso, M.5    Granger, C.V.6
  • 163
    • 53849126165 scopus 로고    scopus 로고
    • Neural networks and statistical techniques: a review of applications
    • Paliwal M, Kumar UA. 2009. Neural networks and statistical techniques: a review of applications. Expert Systems with Applications 36(1): 2–17.
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 2-17
    • Paliwal, M.1    Kumar, U.A.2
  • 164
    • 13544265385 scopus 로고    scopus 로고
    • A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem
    • Pendharkar PC. 2005. A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem. Computers and Operations Research 32(10): 2561–2582.
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2561-2582
    • Pendharkar, P.C.1
  • 166
    • 48749094245 scopus 로고    scopus 로고
    • Real-time credit card fraud detection using computational intelligence
    • Quah JTS, Sriganesh M. 2008. Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications 35(4): 1721–1732.
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1721-1732
    • Quah, J.T.S.1    Sriganesh, M.2
  • 169
    • 0001384863 scopus 로고
    • Quantitative methods in credit management: a survey
    • Rosenberg E, Gleit A. 1994. Quantitative methods in credit management: a survey. Operations Research 42(4): 589–613.
    • (1994) Operations Research , vol.42 , Issue.4 , pp. 589-613
    • Rosenberg, E.1    Gleit, A.2
  • 170
    • 84988828223 scopus 로고
    • Neural networks: a new tool for predicting thrift failures
    • Salchenberger LM, Cinar EM, Lash NA. 1992. Neural networks: a new tool for predicting thrift failures. Decision Sciences 23(4): 899–916.
    • (1992) Decision Sciences , vol.23 , Issue.4 , pp. 899-916
    • Salchenberger, L.M.1    Cinar, E.M.2    Lash, N.A.3
  • 172
    • 60849137198 scopus 로고    scopus 로고
    • Comparison procedure of predicting the time to default in behavioural scoring
    • Sarlija N, Bensic M, Zekic-Susac M. 2009. Comparison procedure of predicting the time to default in behavioural scoring. Expert Systems with Applications 36(5): 8778–8788.
    • (2009) Expert Systems with Applications , vol.36 , Issue.5 , pp. 8778-8788
    • Sarlija, N.1    Bensic, M.2    Zekic-Susac, M.3
  • 173
    • 33745003656 scopus 로고    scopus 로고
    • Using adaptive learning in credit scoring to estimate take-up probability distribution
    • Seow H, Thomas LC. 2006. Using adaptive learning in credit scoring to estimate take-up probability distribution. European Journal of Operational Research 173(3): 880–892.
    • (2006) European Journal of Operational Research , vol.173 , Issue.3 , pp. 880-892
    • Seow, H.1    Thomas, L.C.2
  • 174
    • 0034264056 scopus 로고    scopus 로고
    • Diagnosis of MRSA with neural networks and logistic regression approach
    • Shang JS, Lin YE, Goetz AM. 2000. Diagnosis of MRSA with neural networks and logistic regression approach. Health Care Management Science 3(4): 287–297.
    • (2000) Health Care Management Science , vol.3 , Issue.4 , pp. 287-297
    • Shang, J.S.1    Lin, Y.E.2    Goetz, A.M.3
  • 177
    • 0031336193 scopus 로고    scopus 로고
    • Cost estimation predictive modeling: regression versus neural network
    • Smith AE, Mason AK. 1997. Cost estimation predictive modeling: regression versus neural network. The Engineering Economist 42(2): 137–161.
    • (1997) The Engineering Economist , vol.42 , Issue.2 , pp. 137-161
    • Smith, A.E.1    Mason, A.K.2
  • 178
    • 34447098290 scopus 로고    scopus 로고
    • Quantile regression for modelling distributions of profit and loss
    • Somers M, Whittaker J. 2007. Quantile regression for modelling distributions of profit and loss. European Journal of Operational Research 183(3): 1477–1487.
    • (2007) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1477-1487
    • Somers, M.1    Whittaker, J.2
  • 179
    • 17044428072 scopus 로고    scopus 로고
    • Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses
    • Song JH, Venkatesh SS, Conant EA, Arger PH, Sehgal SM. 2005. Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses. Academic Radiology 12(4): 487–495.
    • (2005) Academic Radiology , vol.12 , Issue.4 , pp. 487-495
    • Song, J.H.1    Venkatesh, S.S.2    Conant, E.A.3    Arger, P.H.4    Sehgal, S.M.5
  • 180
    • 84901192943 scopus 로고    scopus 로고
    • Artificial neural networks and the accounting method choice in the oil and gas industry
    • Spear NA, Leis M. 1997. Artificial neural networks and the accounting method choice in the oil and gas industry. Accounting Management and Information Technology 7(3): 169–181.
    • (1997) Accounting Management and Information Technology , vol.7 , Issue.3 , pp. 169-181
    • Spear, N.A.1    Leis, M.2
  • 181
    • 38249026325 scopus 로고
    • A credit scoring model for personal loans
    • Goovaerts M. J
    • Steenackers A, Goovaerts M. J. 1989. A credit scoring model for personal loans. Insurance: Mathematics and Economics 8(8): 31–34.
    • (1989) Insurance: Mathematics and Economics , vol.8 , Issue.8 , pp. 31-34
    • Steenackers, A.1
  • 182
    • 0038533343 scopus 로고    scopus 로고
    • Evaluating business credit risk by means of approach-integrating decision rules and case-based learning
    • Stefanowski, J, Wilk, S. 2001. Evaluating business credit risk by means of approach-integrating decision rules and case-based learning. Intelligent Systems in Accounting, Finance and Management 10(2): 97–114.
    • (2001) Intelligent Systems in Accounting, Finance and Management , vol.10 , Issue.2 , pp. 97-114
    • Stefanowski, J.1    Wilk, S.2
  • 183
    • 45049086396 scopus 로고
    • Consumer finance
    • Altman EI, (ed.)., John Wiley and Sons, Inc, New York
    • Sullivan AC. 1981. Consumer finance. In Financial Handbook, Altman EI (ed.). John Wiley and Sons, Inc.: New York; 9.3–9.27.
    • (1981) Financial Handbook , pp. 9.3-9.27
    • Sullivan, A.C.1
  • 185
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: the case of bank failure predictions
    • Tam KY, Kiang MY. 1992. Managerial applications of neural networks: the case of bank failure predictions. Management Science 38(7): 926–947.
    • (1992) Management Science , vol.38 , Issue.7 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2
  • 186
    • 0346479554 scopus 로고    scopus 로고
    • Internal reinforcement in a connectionist genetic programming approach
    • Teller A, Veloso M. 2000. Internal reinforcement in a connectionist genetic programming approach. Artificial Intelligence 120(2): 165–198.
    • (2000) Artificial Intelligence , vol.120 , Issue.2 , pp. 165-198
    • Teller, A.1    Veloso, M.2
  • 188
    • 0034346267 scopus 로고    scopus 로고
    • Artificial neural network decision support systems for new product development project selection
    • Thieme RJ, Song M, Calantone RJ. 2000. Artificial neural network decision support systems for new product development project selection. Journal of Marketing Research 37(4): 499–507.
    • (2000) Journal of Marketing Research , vol.37 , Issue.4 , pp. 499-507
    • Thieme, R.J.1    Song, M.2    Calantone, R.J.3
  • 189
    • 0002975427 scopus 로고    scopus 로고
    • Methodologies for classifying applicants for credit
    • Hand DJ, Jacka SD, (eds)., Arnold, London
    • Thomas LC. 1998. Methodologies for classifying applicants for credit. In Statistics in Finance, Hand DJ, Jacka SD (eds). Arnold: London; 83–103.
    • (1998) Statistics in Finance , pp. 83-103
    • Thomas, L.C.1
  • 190
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers
    • Thomas LC. 2000. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting 16(2): 149–172.
    • (2000) International Journal of Forecasting , vol.16 , Issue.2 , pp. 149-172
    • Thomas, L.C.1
  • 193
    • 84986067695 scopus 로고    scopus 로고
    • Bank lending and the environment: policies and opportunities
    • Thompson P. 1998. Bank lending and the environment: policies and opportunities. International Journal of Bank Marketing 16(6): 243–252.
    • (1998) International Journal of Bank Marketing , vol.16 , Issue.6 , pp. 243-252
    • Thompson, P.1
  • 196
    • 38649113538 scopus 로고    scopus 로고
    • Using neural networks ensembles for bankruptcy prediction and credit scoring
    • Tsai C, Wu J. 2008. Using neural networks ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications 34(4): 2639–2649.
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.1    Wu, J.2
  • 197
    • 4243066337 scopus 로고    scopus 로고
    • Credit scoring system for small business loans
    • Tsaih R, Liu Y, Liu W, Lien Y. 2004. Credit scoring system for small business loans. Decision Support Systems 38(1): 91–99.
    • (2004) Decision Support Systems , vol.38 , Issue.1 , pp. 91-99
    • Tsaih, R.1    Liu, Y.2    Liu, W.3    Lien, Y.4
  • 198
    • 22144437751 scopus 로고    scopus 로고
    • Comparison of neural networks and regression analysis: a new insight
    • Usha AK. 2005. Comparison of neural networks and regression analysis: a new insight. Expert Systems with Applications 29(2): 424–430.
    • (2005) Expert Systems with Applications , vol.29 , Issue.2 , pp. 424-430
    • Usha, A.K.1
  • 200
    • 22744447363 scopus 로고    scopus 로고
    • The impact of sample bias on consumer credit scoring performance and profitability
    • Verstraeten G, Van den Poel D. 2005. The impact of sample bias on consumer credit scoring performance and profitability. Journal of the Operational Research Society 56(8): 981–992.
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.8 , pp. 981-992
    • Verstraeten, G.1    Van den Poel, D.2
  • 201
    • 0033207286 scopus 로고    scopus 로고
    • A comparative analysis of regression and neural networks for university admissions
    • Walczak S, Sincich T. 1999. A comparative analysis of regression and neural networks for university admissions. Information Sciences 119(1–2): 1–20.
    • (1999) Information Sciences , vol.119 , Issue.1-2 , pp. 1-20
    • Walczak, S.1    Sincich, T.2
  • 202
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • Warner B, Misra M. 1996. Understanding neural networks as statistical tools. The American Statistician 50(4): 284–293.
    • (1996) The American Statistician , vol.50 , Issue.4 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 203
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West D. 2000. Neural network credit scoring models. Computers and Operations Research 27(11–12): 1131–1152.
    • (2000) Computers and Operations Research , vol.27 , Issue.11-12 , pp. 1131-1152
    • West, D.1
  • 204
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • West D, Dellana S, Qian J. 2005. Neural network ensemble strategies for financial decision applications. Computers and Operations Research 32(10): 2543–2559.
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 205
    • 0034175985 scopus 로고    scopus 로고
    • A model for portfolio selection with order of expected returns
    • Xia Y, Liu B, Wang S, Lai KK. 2000. A model for portfolio selection with order of expected returns. Computers and Operations Research 27(5): 409–422.
    • (2000) Computers and Operations Research , vol.27 , Issue.5 , pp. 409-422
    • Xia, Y.1    Liu, B.2    Wang, S.3    Lai, K.K.4
  • 206
    • 34447107877 scopus 로고    scopus 로고
    • Adaptive credit scoring with kernel learning methods
    • Yang Y. 2007. Adaptive credit scoring with kernel learning methods. European Journal of Operational Research 183(3): 1521–1536.
    • (2007) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1521-1536
    • Yang, Y.1
  • 208
    • 21044454864 scopus 로고    scopus 로고
    • Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)
    • Yesilnacar E, Topal T. 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology 79(3–4): 251–266.
    • (2005) Engineering Geology , vol.79 , Issue.3-4 , pp. 251-266
    • Yesilnacar, E.1    Topal, T.2
  • 209
    • 9244223578 scopus 로고    scopus 로고
    • Comparison of country risk models: hybrid neural networks, logit models, discriminant analysis and cluster techniques
    • Yim J, Mitchell H. 2005. Comparison of country risk models: hybrid neural networks, logit models, discriminant analysis and cluster techniques. Expert Systems with Applications 28(1): 137–148.
    • (2005) Expert Systems with Applications , vol.28 , Issue.1 , pp. 137-148
    • Yim, J.1    Mitchell, H.2
  • 211
    • 56349095375 scopus 로고    scopus 로고
    • An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: the case of credit scoring
    • Yu L, Wang S, Lai K. 2009. An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: the case of credit scoring. European Journal of Operational Research 195(3): 942–959.
    • (2009) European Journal of Operational Research , vol.195 , Issue.3 , pp. 942-959
    • Yu, L.1    Wang, S.2    Lai, K.3
  • 213
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis
    • Zhang G, Hu MY, Patuwo BE, Indro DC. 1999. Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis. European Journal of Operational Research 116(1): 16–32.
    • (1999) European Journal of Operational Research , vol.116 , Issue.1 , pp. 16-32
    • Zhang, G.1    Hu, M.Y.2    Patuwo, B.E.3    Indro, D.C.4
  • 214
    • 2442688288 scopus 로고    scopus 로고
    • Genetic programming in classifying large-scale data: an ensemble method
    • Zhang Y, Bhattacharyya S. 2004. Genetic programming in classifying large-scale data: an ensemble method. Information Sciences 163(1–3): 85–101.
    • (2004) Information Sciences , vol.163 , Issue.1-3 , pp. 85-101
    • Zhang, Y.1    Bhattacharyya, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.