메뉴 건너뛰기




Volumn 36, Issue 3 PART 1, 2009, Pages 5264-5271

Accuracy of machine learning models versus "hand crafted" expert systems - A credit scoring case study

Author keywords

Accuracy; Classification; Cohen's kappa; Credit scoring; Expert systems; Hit ratio; Machine learning models; Regression

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS;

EID: 58349110098     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.06.071     Document Type: Article
Times cited : (40)

References (37)
  • 4
  • 5
    • 0025281244 scopus 로고
    • High agreement but low kappa: Resolving the paradoxes
    • [In two parts]
    • Cicchetti D.V., and Feinstein A.R. High agreement but low kappa: Resolving the paradoxes. Journal of Clinical Epidemiology 43 6 (1990) 543-558 [In two parts]
    • (1990) Journal of Clinical Epidemiology , vol.43 , Issue.6 , pp. 543-558
    • Cicchetti, D.V.1    Feinstein, A.R.2
  • 6
    • 58349111653 scopus 로고    scopus 로고
    • Cleary, J. G., & Trigg, L. E. (1995). K*: An instance-based learner using an entropic distance measure, In Proceedings of the 12th International Conference on Machine Learning (pp. 108-114). Morgan Kaufmann.
    • Cleary, J. G., & Trigg, L. E. (1995). K*: An instance-based learner using an entropic distance measure, In Proceedings of the 12th International Conference on Machine Learning (pp. 108-114). Morgan Kaufmann.
  • 7
    • 0002334550 scopus 로고    scopus 로고
    • Kappa and its dependence on marginal rates
    • Armitage P., and Colton T. (Eds), Wiely, NY
    • Cook R.J. Kappa and its dependence on marginal rates. In: Armitage P., and Colton T. (Eds). Encyclopedia of BioStatistics (1998), Wiely, NY 2166-2168
    • (1998) Encyclopedia of BioStatistics , pp. 2166-2168
    • Cook, R.J.1
  • 9
    • 58349086683 scopus 로고    scopus 로고
    • Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the 12th International Conference on Machine Learning, (pp. 115-123). Morgan Kaufmann.
    • Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the 12th International Conference on Machine Learning, (pp. 115-123). Morgan Kaufmann.
  • 11
    • 58349123048 scopus 로고    scopus 로고
    • Daren, O., Warner, G., White, A., & Bessant, C. (2005). Comparison of machine learning techniques and expert systems for the determination of microarray quality. Poster presentation no. G-A6. Computational Biology, Madrid. .
    • Daren, O., Warner, G., White, A., & Bessant, C. (2005). Comparison of machine learning techniques and expert systems for the determination of microarray quality. Poster presentation no. G-A6. Computational Biology, Madrid. .
  • 12
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., and Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 (1997) 103-130
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 13
    • 58349096627 scopus 로고    scopus 로고
    • th International Joint Conference on AI (pp. 1022-1027). Morgan Kaufmann.
    • th International Joint Conference on AI (pp. 1022-1027). Morgan Kaufmann.
  • 14
    • 58349101911 scopus 로고    scopus 로고
    • Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In Proceedings of the 15th International Conference on Machine Learning (pp. 144-151). Morgan Kaufmann.
    • Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In Proceedings of the 15th International Conference on Machine Learning (pp. 144-151). Morgan Kaufmann.
  • 15
    • 84948166287 scopus 로고    scopus 로고
    • Frank, E., & Hall, M. (2001). A simple approach to ordinal classification, In Proceedings of the 12th European Conference on Machine Learning (pp. 145-156). Springer-Verlag.
    • Frank, E., & Hall, M. (2001). A simple approach to ordinal classification, In Proceedings of the 12th European Conference on Machine Learning (pp. 145-156). Springer-Verlag.
  • 16
    • 58349110261 scopus 로고    scopus 로고
    • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceedings of the 13th International Conference on Machine Learning (pp. 148-156). Morgan Kaufmann.
    • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceedings of the 13th International Conference on Machine Learning (pp. 148-156). Morgan Kaufmann.
  • 17
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: A statistical view of boosting. Annals of Statistic 28 (2000) 337-407
    • (2000) Annals of Statistic , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 58349098284 scopus 로고    scopus 로고
    • Hall, M. (1998). Correlation-based feature subset selection for machine learning. Ph.D. thesis, Department of Computer Science, University of Waikato, Hamilton, New Zealand.
    • Hall, M. (1998). Correlation-based feature subset selection for machine learning. Ph.D. thesis, Department of Computer Science, University of Waikato, Hamilton, New Zealand.
  • 19
    • 84957622513 scopus 로고    scopus 로고
    • Holmes, G., Hall, M., & Frank, E. (1999). Generating rule sets from model trees. In Proceedings of the 12th Australian Joint Conference on Artificial Intelligence (pp. 1-12). Springer-Verlag.
    • Holmes, G., Hall, M., & Frank, E. (1999). Generating rule sets from model trees. In Proceedings of the 12th Australian Joint Conference on Artificial Intelligence (pp. 1-12). Springer-Verlag.
  • 20
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte R. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993) 63-91
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.1
  • 21
    • 58349119503 scopus 로고    scopus 로고
    • Kohavi, R. (2005). The Power of Decision Tables. In Proceedings of the Eighth European Conference on Machine Learning (pp. 174-189). Springer-Verlag.
    • Kohavi, R. (2005). The Power of Decision Tables. In Proceedings of the Eighth European Conference on Machine Learning (pp. 174-189). Springer-Verlag.
  • 22
    • 58349117609 scopus 로고    scopus 로고
    • Kohavi, R. (1996). Scaling up the accuracy of Naive-Bayes classifiers: A decision-tree hybrid. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (pp. 202-207). ACM Press.
    • Kohavi, R. (1996). Scaling up the accuracy of Naive-Bayes classifiers: A decision-tree hybrid. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (pp. 202-207). ACM Press.
  • 24
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms
    • Lim T.S., Loh W.Y., and Shih Y.S. A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms. Machine Learning 40 (2000) 203-229
    • (2000) Machine Learning , vol.40 , pp. 203-229
    • Lim, T.S.1    Loh, W.Y.2    Shih, Y.S.3
  • 25
    • 84880832861 scopus 로고    scopus 로고
    • Melville, P., & Mooney, R. J. (2003). Constructing diverse classifier ensembles using artificial training examples. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (pp. 505-510). Morgan Kaufmann.
    • Melville, P., & Mooney, R. J. (2003). Constructing diverse classifier ensembles using artificial training examples. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (pp. 505-510). Morgan Kaufmann.
  • 26
    • 0018853176 scopus 로고    scopus 로고
    • Michalski, R. S., Chilausky, R. L. (1980). Knowledge acquisition by encoding expert rules versus computer induction from examples: A case study of involving soybean pathology. In International Journal of Man-Machine Studies (vol. 12) (pp. 63-87). [Republished in International Journal of Human-Computer Studies (same journal), 51(2), August 1999, pp. 239-263]
    • Michalski, R. S., Chilausky, R. L. (1980). Knowledge acquisition by encoding expert rules versus computer induction from examples: A case study of involving soybean pathology. In International Journal of Man-Machine Studies (vol. 12) (pp. 63-87). [Republished in International Journal of Human-Computer Studies (same journal), 51(2), August 1999, pp. 239-263]
  • 27
    • 0040858262 scopus 로고
    • Automated support for building and extending expert models
    • Musen M. Automated support for building and extending expert models. Machine Learning 4 (1989) 347-375
    • (1989) Machine Learning , vol.4 , pp. 347-375
    • Musen, M.1
  • 28
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schoelkopf B., Burges C., and Smola A. (Eds), MIT Press (pp. 185-208)
    • Platt J. Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B., Burges C., and Smola A. (Eds). Advances in Kernel Methods Support Vector Learning (1998), MIT Press (pp. 185-208)
    • (1998) Advances in Kernel Methods Support Vector Learning
    • Platt, J.1
  • 29
    • 2342486926 scopus 로고
    • Simplifying decision trees
    • Gaines B., and Boose J. (Eds), Academic Press (pp. 239-252)
    • Quinlan J.R. Simplifying decision trees. In: Gaines B., and Boose J. (Eds). Knowledge Acquisition for Knowledge-Based Systems (1987), Academic Press (pp. 239-252)
    • (1987) Knowledge Acquisition for Knowledge-Based Systems
    • Quinlan, J.R.1
  • 30
    • 58349104926 scopus 로고    scopus 로고
    • Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence (pp. 343-348). World Scientific.
    • Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence (pp. 343-348). World Scientific.
  • 34
    • 0026156490 scopus 로고
    • A nearest hyperrectangle learning method
    • Salzberg S. A nearest hyperrectangle learning method. Machine Learning 6 (1991) 251-276
    • (1991) Machine Learning , vol.6 , pp. 251-276
    • Salzberg, S.1
  • 35
    • 58349115569 scopus 로고    scopus 로고
    • Smola, A. J., Schölkopf, B. (1998). A tutorial on support vector regression. In NeuroCOLT2 Technical Report Series, NC2-TR-1998-030.
    • Smola, A. J., Schölkopf, B. (1998). A tutorial on support vector regression. In NeuroCOLT2 Technical Report Series, NC2-TR-1998-030.
  • 36
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb G.I. MultiBoosting: A technique for combining boosting and wagging. Machine Learning 40 (2000) 159-196
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.