메뉴 건너뛰기




Volumn 116, Issue 1, 1999, Pages 16-32

Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE SYSTEMS; ARTIFICIAL INTELLIGENCE; ESTIMATION; FINANCE; MATHEMATICAL MODELS; PATTERN RECOGNITION; PROBABILITY; REGRESSION ANALYSIS;

EID: 0032640524     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0377-2217(98)00051-4     Document Type: Article
Times cited : (465)

References (67)
  • 1
    • 0003323261 scopus 로고    scopus 로고
    • Neural networks in corporate failure prediction: The UK experience
    • A.P.N. Refenes, Y. Abu-Mostafa, J. Moody, A. Weigend (Eds.), World Scientific, Singapore
    • Y. Alici, Neural networks in corporate failure prediction: The UK experience, in: A.P.N. Refenes, Y. Abu-Mostafa, J. Moody, A. Weigend (Eds.), Neural Networks in Financial Engineering, World Scientific, Singapore, 1996, pp. 393-406.
    • (1996) Neural Networks in Financial Engineering , pp. 393-406
    • Alici, Y.1
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminate analysis and the prediction of corporate bankruptcy
    • E.L. Altman, Financial ratios, discriminate analysis and the prediction of corporate bankruptcy, Journal of Finance 23 (3) (1968) 589-609.
    • (1968) Journal of Finance , vol.23 , Issue.3 , pp. 589-609
    • Altman, E.L.1
  • 4
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)
    • E.I. Altman, G. Marco, F. Varetto, Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience), Journal of Banking and Finance 18 (1994) 505-529.
    • (1994) Journal of Banking and Finance , vol.18 , pp. 505-529
    • Altman, E.I.1    Marco, G.2    Varetto, F.3
  • 5
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • R. Battiti, First- and second-order methods for learning: Between steepest descent and Newton's method, Neural Computation 4 (2) (1992) 141-166.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 141-166
    • Battiti, R.1
  • 8
    • 0029492199 scopus 로고
    • Effectiveness of neural network types for prediction of business failure
    • J.E. Boritz, D.B. Kennedy, Effectiveness of neural network types for prediction of business failure, Expert Systems with Applications 9 (4) (1995) 503-512.
    • (1995) Expert Systems with Applications , vol.9 , Issue.4 , pp. 503-512
    • Boritz, J.E.1    Kennedy, D.B.2
  • 11
    • 0012580072 scopus 로고
    • Recognizing financial distress patterns using a neural network tool
    • P.K. Coats, L.F. Fant, Recognizing financial distress patterns using a neural network tool, Financial Management (1993) 142-155.
    • (1993) Financial Management , pp. 142-155
    • Coats, P.K.1    Fant, L.F.2
  • 12
    • 0008975556 scopus 로고
    • Neural networks for bankruptcy prediction: The power to solve financial problems
    • K.G. Coleman, T.J. Graettinger, W.F. Lawrence, Neural networks for bankruptcy prediction: The power to solve financial problems, AI Review (1991) 48-50.
    • (1991) AI Review , pp. 48-50
    • Coleman, K.G.1    Graettinger, T.J.2    Lawrence, W.F.3
  • 13
    • 0029409251 scopus 로고
    • Neural modeling for time series: A statistical stepwise method for weight elimination
    • M.B. Cottrell, Y. Girard, M. Mangeas, C. Muller, Neural modeling for time series: A statistical stepwise method for weight elimination, IEEE Transactions on Neural Networks 6 (6) (1995) 1355-1364.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.6 , pp. 1355-1364
    • Cottrell, M.B.1    Girard, Y.2    Mangeas, M.3    Muller, C.4
  • 14
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematical Control Signals Systems 2 (1989) 303-314.
    • (1989) Mathematical Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 16
    • 84974012882 scopus 로고
    • An empirical test of financial ratio analysis for small business failure prediction
    • R. Edmister, An empirical test of financial ratio analysis for small business failure prediction, Journal of Finance and Quantitative Analysis 7 (1972) 1477-1493.
    • (1972) Journal of Finance and Quantitative Analysis , vol.7 , pp. 1477-1493
    • Edmister, R.1
  • 17
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap, the jackknife and crossvalidation
    • B. Efron, G. Gong, A leisurely look at the bootstrap, the jackknife and crossvalidation, American Statistician 37 (1983) 36-48.
    • (1983) American Statistician , vol.37 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 19
    • 0000152448 scopus 로고
    • Forecasting with neural networks: An application using bankruptcy data
    • D. Fletcher, E. Goss, Forecasting with neural networks: An application using bankruptcy data, Information and Management 24 (1993) 159-167.
    • (1993) Information and Management , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 23
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4 (1991) 251-257.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 24
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • K. Hornik, Some new results on neural network approximation, Neural Networks 6 (1993) 1069-1072.
    • (1993) Neural Networks , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 25
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 29
    • 84993858137 scopus 로고
    • Ratio analysis and the prediction of firm failure
    • C. Johnson, Ratio analysis and the prediction of firm failure, Journal of Finance 25 (1970) 1166-1168.
    • (1970) Journal of Finance , vol.25 , pp. 1166-1168
    • Johnson, C.1
  • 30
    • 0000641011 scopus 로고
    • Current techniques in bankruptcy prediction
    • F.L. Jones, Current techniques in bankruptcy prediction, Journal of Accounting Literature 6 (1987) 131-164.
    • (1987) Journal of Accounting Literature , vol.6 , pp. 131-164
    • Jones, F.L.1
  • 31
    • 0344613950 scopus 로고    scopus 로고
    • Corporate distress diagnosis - An international comparison
    • A.P.N. Refenes, Y. Abu-Mostafa, J. Moody, A. Weigend (Eds.), World Scientific, Singapore
    • M. Kerling, Corporate distress diagnosis - An international comparison, in: A.P.N. Refenes, Y. Abu-Mostafa, J. Moody, A. Weigend (Eds.), Neural Networks in Financial Engineering, World Scientific, Singapore, 1996, pp. 407-422.
    • (1996) Neural Networks in Financial Engineering , pp. 407-422
    • Kerling, M.1
  • 34
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • K.C. Lee, I. Han, Y. Kwon, Hybrid neural network models for bankruptcy predictions, Decision Support Systems 18 (1996) 63-72.
    • (1996) Decision Support Systems , vol.18 , pp. 63-72
    • Lee, K.C.1    Han, I.2    Kwon, Y.3
  • 35
    • 84990571875 scopus 로고
    • The application of neural networks and a qualitative response model to the auditor's going concern uncertainty decision
    • M.J. Lenard, P. Alam, G.R. Madey, The application of neural networks and a qualitative response model to the auditor's going concern uncertainty decision, Decision Science 26 (2) (1995) 209-226.
    • (1995) Decision Science , vol.26 , Issue.2 , pp. 209-226
    • Lenard, M.J.1    Alam, P.2    Madey, G.R.3
  • 36
    • 0030110988 scopus 로고    scopus 로고
    • Neural network prediction analysis: The bankruptcy case
    • M. Leshno, Y. Spector, Neural network prediction analysis: The bankruptcy case, Neurocomputing 10 (1996) 125-147.
    • (1996) Neurocomputing , vol.10 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 37
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R. Lippmann, An introduction to computing with neural nets, IEEE ASSP Magazine 4 (1987) 2-22.
    • (1987) IEEE ASSP Magazine , vol.4 , pp. 2-22
    • Lippmann, R.1
  • 39
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • J. Ohlson, Financial ratios and the probabilistic prediction of bankruptcy, Journal of Accounting Research 18 (1) (1980) 109-131.
    • (1980) Journal of Accounting Research , vol.18 , Issue.1 , pp. 109-131
    • Ohlson, J.1
  • 41
    • 0023602770 scopus 로고
    • Optimal algorithm for adaptive networks: Second order back propagation, second order direct propagation, and second order Hebbian learning
    • D.B. Parker, Optimal algorithm for adaptive networks: Second order back propagation, second order direct propagation, and second order Hebbian learning, in: Proceedings of IEEE International Conference on Neural Networks, 1987, pp. 593-600.
    • (1987) Proceedings of IEEE International Conference on Neural Networks , pp. 593-600
    • Parker, D.B.1
  • 42
    • 84990585716 scopus 로고
    • Two-group classification using neural networks
    • E. Patuwo, M.Y. Hu, M.S. Hung, Two-group classification using neural networks, Decision Science 24 (4) (1993) 825-845.
    • (1993) Decision Science , vol.24 , Issue.4 , pp. 825-845
    • Patuwo, E.1    Hu, M.Y.2    Hung, M.S.3
  • 43
    • 0028448573 scopus 로고
    • A classification approach using multi-layered neural networks
    • S. Piramuthu, M.J. Shaw, J.A. Gentry, A classification approach using multi-layered neural networks, Decision Support Systems 11 (1994) 509-525.
    • (1994) Decision Support Systems , vol.11 , pp. 509-525
    • Piramuthu, S.1    Shaw, M.J.2    Gentry, J.A.3
  • 44
    • 0344182397 scopus 로고
    • Bankruptcy prediction: A comparison with discriminant analysis
    • A.P.N. Refenes (Ed.), Wiley, Chichester
    • T. Poddig, Bankruptcy prediction: A comparison with discriminant analysis, in: A.P.N. Refenes (Ed.), Neural Networks in the Capital Markets, Wiley, Chichester, 1995, pp. 311-324.
    • (1995) Neural Networks in the Capital Markets , pp. 311-324
    • Poddig, T.1
  • 51
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posterior probabilities
    • M.D. Richard, R.P. Lippmann, Neural network classifiers estimate Bayesian a posterior probabilities, Neural Computation 3 (1991) 461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 52
    • 0027259956 scopus 로고
    • A polynomial time algorithm for the construction and training of a class of multilayer perceptrons
    • A. Roy, L.S. Kim, S. Mukhopadhyay, A polynomial time algorithm for the construction and training of a class of multilayer perceptrons, Neural Networks 6 (1993) 535-545.
    • (1993) Neural Networks , vol.6 , pp. 535-545
    • Roy, A.1    Kim, L.S.2    Mukhopadhyay, S.3
  • 53
    • 0345476260 scopus 로고
    • Early bankruptcy detection using neural networks
    • G. Rudorfer, Early bankruptcy detection using neural networks, APL Quote Quad 25 (4) (1995) 171-176.
    • (1995) APL Quote Quad , vol.25 , Issue.4 , pp. 171-176
    • Rudorfer, G.1
  • 55
    • 84988828223 scopus 로고
    • Neural networks: A new tool for predicting thrift failures
    • L.M. Salchengerger, E.M. Cinar, N.A. Lash, Neural networks: A new tool for predicting thrift failures, Decision Sciences 23 (4) (1992) 899-916.
    • (1992) Decision Sciences , vol.23 , Issue.4 , pp. 899-916
    • Salchengerger, L.M.1    Cinar, E.M.2    Lash, N.A.3
  • 56
    • 0030201218 scopus 로고    scopus 로고
    • Effect of data standardization on neural network training
    • M. Shanker, M.Y. Hu, M.S. Hung, Effect of data standardization on neural network training, Omega 24 (4) (1996) 385-397.
    • (1996) Omega , vol.24 , Issue.4 , pp. 385-397
    • Shanker, M.1    Hu, M.Y.2    Hung, M.S.3
  • 57
    • 0000669406 scopus 로고    scopus 로고
    • Neural network experiments in business-failure forecasting: Predictive performance measurement issues
    • R. Sharda, R.L. Wilson, Neural network experiments in business-failure forecasting: Predictive performance measurement issues, International Journal of Computational Intelligence and Organizations 1 (2) (1996) 107-117.
    • (1996) International Journal of Computational Intelligence and Organizations , vol.1 , Issue.2 , pp. 107-117
    • Sharda, R.1    Wilson, R.L.2
  • 58
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society B 36 (1974) 111-147.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 59
    • 0000857154 scopus 로고
    • A GRG2-based system for training neural networks: Design and computational experience
    • V. Subramianian, M.S. Hung, A GRG2-based system for training neural networks: Design and computational experience, ORSA Journal on Computing 5 (4) (1993) 386-394.
    • (1993) ORSA Journal on Computing , vol.5 , Issue.4 , pp. 386-394
    • Subramianian, V.1    Hung, M.S.2
  • 60
    • 0001273663 scopus 로고
    • Neural network models and the prediction of bank bankruptcy
    • K.Y. Tam, Neural network models and the prediction of bank bankruptcy, OMEGA 19 (5) (1991) 429-445.
    • (1991) OMEGA , vol.19 , Issue.5 , pp. 429-445
    • Tam, K.Y.1
  • 61
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • K.Y. Tam, M.Y. Kiang, Managerial applications of neural networks: The case of bank failure predictions, Management Science 38 (7) (1992) 926-947.
    • (1992) Management Science , vol.38 , Issue.7 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2
  • 63
    • 0000126580 scopus 로고
    • Prediction Japanese corporate bankruptcy in terms of financial data using neural network
    • J. Tsukuda, S. Baba, Prediction Japanese corporate bankruptcy in terms of financial data using neural network, Computers and Industrial Engineering 27 (1994) 445-448.
    • (1994) Computers and Industrial Engineering , vol.27 , pp. 445-448
    • Tsukuda, J.1    Baba, S.2
  • 64
    • 0001727672 scopus 로고
    • Neural network performance on the bankruptcy classification problem
    • G. Udo, Neural network performance on the bankruptcy classification problem, Computers and Industrial Engineering 25 (1993) 377-380.
    • (1993) Computers and Industrial Engineering , vol.25 , pp. 377-380
    • Udo, G.1
  • 65
    • 0028319326 scopus 로고
    • A procedure for determining the topology of multilayer feedforward neural networks
    • Z. Wang, C.D. Massimo, M.T. Tham, A.J. Morris, A procedure for determining the topology of multilayer feedforward neural networks, Neural Networks 7 (1994) 291-300.
    • (1994) Neural Networks , vol.7 , pp. 291-300
    • Wang, Z.1    Massimo, C.D.2    Tham, M.T.3    Morris, A.J.4
  • 66
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • R.L. Wilson, R. Sharda, Bankruptcy prediction using neural networks, Decision Support Systems 11 (1994) 545-557.
    • (1994) Decision Support Systems , vol.11 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.