메뉴 건너뛰기




Volumn 56, Issue 9, 2005, Pages 1089-1098

Neural network survival analysis for personal loan data

Author keywords

Credit scoring; Neural networks; Survival analysis

Indexed keywords

APPROXIMATION THEORY; MATHEMATICAL MODELS; NEURAL NETWORKS; SOCIETIES AND INSTITUTIONS; STATISTICAL METHODS;

EID: 24144451810     PISSN: 01605682     EISSN: None     Source Type: Journal    
DOI: 10.1057/palgrave.jors.2601990     Document Type: Article
Times cited : (88)

References (25)
  • 1
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit-risk evaluation
    • Baesens B, Setiono R, Mues C and Vanthienen J (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Mngt Sci 49(3): 312-329.
    • (2003) Mngt Sci , vol.49 , Issue.3 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 2
    • 0038209756 scopus 로고    scopus 로고
    • Benchmarking state-of-the-art classification algorithms for credit scoring
    • Baesens B et al (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. J Opl Res Soc 54(6): 627-635.
    • (2003) J Opl Res Soc , vol.54 , Issue.6 , pp. 627-635
    • Baesens, B.1
  • 3
    • 0033283750 scopus 로고    scopus 로고
    • Not if but when will borrowers default
    • Banasik J, Crook JN and Thomas LC (1999). Not if but when will borrowers default. J Opl Res Soc 50: 1185-1190.
    • (1999) J Opl Res Soc , vol.50 , pp. 1185-1190
    • Banasik, J.1    Crook, J.N.2    Thomas, L.C.3
  • 5
    • 0002258481 scopus 로고
    • Survival analysis and the credit granting decision
    • Thomas LC, Crook JN, and Edelman DB (eds). Oxford University Press: Oxford
    • Narain B (1992). Survival analysis and the credit granting decision. In: Thomas LC, Crook JN, and Edelman DB (eds). Credit Scoring and Credit Control. Oxford University Press: Oxford, pp 109-121.
    • (1992) Credit Scoring and Credit Control , pp. 109-121
    • Narain, B.1
  • 6
    • 0036508197 scopus 로고    scopus 로고
    • Survival analysis methods for personal loan data
    • Stepanova M and Thomas LC (2002). Survival analysis methods for personal loan data. Opl Res 50(2): 277-289.
    • (2002) Opl Res , vol.50 , Issue.2 , pp. 277-289
    • Stepanova, M.1    Thomas, L.C.2
  • 7
    • 0035448389 scopus 로고    scopus 로고
    • PHAB scores: Proportional hazards analysis behavioural scores
    • Stepanova M and Thomas LC (2001). PHAB scores: proportional hazards analysis behavioural scores. J Opl Res Soc 52(9): 1007-1016.
    • (2001) J Opl Res Soc , vol.52 , Issue.9 , pp. 1007-1016
    • Stepanova, M.1    Thomas, L.C.2
  • 8
    • 0028328448 scopus 로고
    • A technique for using neural network analysis to perform survival analysis of censored data
    • De Laurentiis M and Ravdin PM (1994). A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett 77: 127-138.
    • (1994) Cancer Lett , vol.77 , pp. 127-138
    • De Laurentiis, M.1    Ravdin, P.M.2
  • 12
    • 33845382806 scopus 로고
    • Nonparametric estimation from incomplete observations
    • Kaplan EL and Meier P (1958). Nonparametric estimation from incomplete observations. J Am Stat Assoc 53: 457-481.
    • (1958) J Am Stat Assoc , vol.53 , pp. 457-481
    • Kaplan, E.L.1    Meier, P.2
  • 13
    • 0030743761 scopus 로고    scopus 로고
    • Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
    • Bottaci L et al (1997). Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 350: 469-472.
    • (1997) Lancet , vol.350 , pp. 469-472
    • Bottaci, L.1
  • 14
    • 0030333384 scopus 로고    scopus 로고
    • Sequential use of neural networks for survival prediction in aids
    • Ohno-Machado L (1996). Sequential use of neural networks for survival prediction in aids. J Am Med Inf 3: 170-174.
    • (1996) J Am Med Inf , vol.3 , pp. 170-174
    • Ohno-Machado, L.1
  • 15
    • 0028019225 scopus 로고
    • Survival analysis of censored data: Neural network analysis detection of complex interactions between variables
    • De Laurentiis M and Ravdin P (1994). Survival analysis of censored data: neural network analysis detection of complex interactions between variables. Breast Cancer Res Treat 32: 113-118.
    • (1994) Breast Cancer Res Treat , vol.32 , pp. 113-118
    • De Laurentiis, M.1    Ravdin, P.2
  • 16
    • 0026794564 scopus 로고
    • A practical application of neural network analysis for predicting outcome of individual breast cancer patients
    • Ravdin PM and Clark GM (1992). A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Treat 22: 285-293.
    • (1992) Breast Cancer Res Treat , vol.22 , pp. 285-293
    • Ravdin, P.M.1    Clark, G.M.2
  • 17
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • Biganzoli E, Boracchi P, Mariani L and Marubini E (1998). Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 17: 1169-1186.
    • (1998) Stat Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 18
    • 0029035906 scopus 로고
    • Use of neural networks in predicting the risk of coronary artery disease
    • Lapuerta P, Azen SP and LaBree L (1995). Use of neural networks in predicting the risk of coronary artery disease. Comput Biomed Res 28: 38-52.
    • (1995) Comput Biomed Res , vol.28 , pp. 38-52
    • Lapuerta, P.1    Azen, S.P.2    Labree, L.3
  • 19
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi D and Simon R (1995). A neural network model for survival data. Stat Med 14: 73-82.
    • (1995) Stat Med , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 20
    • 8244219678 scopus 로고    scopus 로고
    • Prognostic factors for metachronous contralateral breast cancer: A comparison of the linear cox regression model and its artificial neural network extension
    • Mariani L et al (1997). Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear cox regression model and its artificial neural network extension. Breast Cancer Res Treat 44: 167-178.
    • (1997) Breast Cancer Res Treat , vol.44 , pp. 167-178
    • Mariani, L.1
  • 22
    • 0031233464 scopus 로고    scopus 로고
    • On the use of artificial neural networks for the analysis of survival data
    • Brown SF, Branford A and Moran W (1997). On the use of artificial neural networks for the analysis of survival data. IEEE Trans Neural Networks 8: 1071-1077.
    • (1997) IEEE Trans Neural Networks , vol.8 , pp. 1071-1077
    • Brown, S.F.1    Branford, A.2    Moran, W.3
  • 24
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • MacKay DJC (1992). The evidence framework applied to classification networks. Neural Comput 4(5): 720-736.
    • (1992) Neural Comput , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 25
    • 0036532641 scopus 로고    scopus 로고
    • Using Bayesian neural networks for repeat purchase modelling in direct marketing
    • Baesens B et al (2002). Using Bayesian neural networks for repeat purchase modelling in direct marketing. Eur J Opl Res 138(1): 191-211.
    • (2002) Eur J Opl Res , vol.138 , Issue.1 , pp. 191-211
    • Baesens, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.