메뉴 건너뛰기




Volumn , Issue , 2015, Pages 529-553

Mechanisms of DNA transposition

Author keywords

Chemical reactions; DNA transposition mechanisms; Genome repair; Strand transfer; Transposition pathways; Transposon insertion

Indexed keywords


EID: 85103344854     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1128/9781555819217.ch25     Document Type: Chapter
Times cited : (16)

References (90)
  • 1
    • 0242636324 scopus 로고    scopus 로고
    • The outs and ins of transposition:From Mu to kangaroo
    • Curcio MJ, Derbyshire KM. 2003. The outs and ins of transposition:From Mu to kangaroo. Nature Rev Mol Cell Biol 4:865-877.
    • (2003) Nature Rev Mol Cell Biol , vol.4 , pp. 865-877
    • Curcio, M.J.1    Derbyshire, K.M.2
  • 2
    • 79958040710 scopus 로고    scopus 로고
    • Moving DNA around:DNA transposition and retroviral integration
    • Montano SP, Rice PA. 2011. Moving DNA around:DNA transposition and retroviral integration. Curr Opin Struct Biol 21:370-378.
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 370-378
    • Montano, S.P.1    Rice, P.A.2
  • 4
    • 79951678159 scopus 로고    scopus 로고
    • Nucleases:diversity of structure, function and mechanism
    • Yang W. 2011. Nucleases:diversity of structure, function and mechanism. Quart Rev Biophys 44:1-93.
    • (2011) Quart Rev Biophys , vol.44 , pp. 1-93
    • Yang, W.1
  • 5
    • 0028584269 scopus 로고
    • Crystal structure of the catalytic domain of HIV-1 integrase:Similarity to other polynucleotidyl transferases
    • Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR. 1994. Crystal structure of the catalytic domain of HIV-1 integrase:Similarity to other polynucleotidyl transferases. Science 266:1981-1986.
    • (1994) Science , vol.266 , pp. 1981-1986
    • Dyda, F.1    Hickman, A.B.2    Jenkins, T.M.3    Engelman, A.4    Craigie, R.5    Davies, D.R.6
  • 6
    • 0029129435 scopus 로고
    • Structure of the bacteriophage Mu transposase core:A common structural motif for DNA transposition and retroviral integration
    • Rice P, Mizuuchi K. 1995. Structure of the bacteriophage Mu transposase core:A common structural motif for DNA transposition and retroviral integration. Cell 82:209-220.
    • (1995) Cell , vol.82 , pp. 209-220
    • Rice, P.1    Mizuuchi, K.2
  • 7
    • 79956364806 scopus 로고    scopus 로고
    • The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies
    • Yuan YW, Wessler SR. 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA 108:7884-7889.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 7884-7889
    • Yuan, Y.W.1    Wessler, S.R.2
  • 8
    • 0027205506 scopus 로고
    • Computer-assisted dissection of rolling circle DNA replication
    • Koonin EV, Ilyina TV. 1993. Computer-assisted dissection of rolling circle DNA replication. BioSystems 30:241-268.
    • (1993) BioSystems , vol.30 , pp. 241-268
    • Koonin, E.V.1    Ilyina, T.V.2
  • 9
    • 0036229438 scopus 로고    scopus 로고
    • Diversity in the serine recombinases
    • Smith MCM, Thorpe HM. 2002. Diversity in the serine recombinases. Mol Microbiol 44:299-307.
    • (2002) Mol Microbiol , vol.44 , pp. 299-307
    • Smith, M.C.M.1    Thorpe, H.M.2
  • 10
    • 77953258878 scopus 로고    scopus 로고
    • Site-specific recombination by FC31 integrase and other large serine recombinases
    • Smith MCM, Brown WRA, McEwan AR, Rowley PA. 2010. Site-specific recombination by FC31 integrase and other large serine recombinases. Biochem Soc Trans 38:388-394.
    • (2010) Biochem Soc Trans , vol.38 , pp. 388-394
    • Smith, M.C.M.1    Brown, W.R.A.2    McEwan, A.R.3    Rowley, P.A.4
  • 11
    • 66749140560 scopus 로고    scopus 로고
    • Challenging a paradigm:the role of DNA homology in tyrosine recombinase reactions
    • Rajeev L, Malanowska K, Gardner JF. 2009. Challenging a paradigm:the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 73:300-309.
    • (2009) Microbiol Mol Biol Rev , vol.73 , pp. 300-309
    • Rajeev, L.1    Malanowska, K.2    Gardner, J.F.3
  • 12
    • 0026019625 scopus 로고
    • Structural basis for the 3-5 exonuclease activity of Escherichia coli DNA polymerase I:a two metal ion mechanism
    • Beese LS, Steitz TA. 1991. Structural basis for the 3-5 exonuclease activity of Escherichia coli DNA polymerase I:a two metal ion mechanism. EMBO J 10:25-33.
    • (1991) EMBO J , vol.10 , pp. 25-33
    • Beese, L.S.1    Steitz, T.A.2
  • 13
    • 21244451435 scopus 로고    scopus 로고
    • Crystal structures of RNase H bound to an RNA/DNA hybrid:Substrate specificity and metaldependent catalysis
    • Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. 2005. Crystal structures of RNase H bound to an RNA/DNA hybrid:Substrate specificity and metaldependent catalysis. Cell 121:1005-1016.
    • (2005) Cell , vol.121 , pp. 1005-1016
    • Nowotny, M.1    Gaidamakov, S.A.2    Crouch, R.J.3    Yang, W.4
  • 14
    • 33646004109 scopus 로고    scopus 로고
    • Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release
    • Nowotny M, Yang W. 2006. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J 25:1924-1933.
    • (2006) EMBO J , vol.25 , pp. 1924-1933
    • Nowotny, M.1    Yang, W.2
  • 15
    • 67650433782 scopus 로고    scopus 로고
    • Artificial reaction coordinate "tunneling" in freeenergy calculations:The catalytic reaction of RNase H
    • Rosta E, Woodcock HL, Brooks BR, Hummer G. 2009. Artificial reaction coordinate "tunneling" in freeenergy calculations:The catalytic reaction of RNase H. J Comput Chem 30:1634-1641.
    • (2009) J Comput Chem , vol.30 , pp. 1634-1641
    • Rosta, E.1    Woodcock, H.L.2    Brooks, B.R.3    Hummer, G.4
  • 16
    • 79958776843 scopus 로고    scopus 로고
    • Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations
    • Rosta E, Nowotny M, Yang W, Hummer G. 2011. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. J Am Chem Soc 133:8934-8941.
    • (2011) J Am Chem Soc , vol.133 , pp. 8934-8941
    • Rosta, E.1    Nowotny, M.2    Yang, W.3    Hummer, G.4
  • 17
    • 0025899314 scopus 로고
    • Inversion of the phosphate chirality at the target site of Mu DNA strand transfer:evidence for a one-step transesterification mechanism
    • Mizuuchi K, Adzuma K. 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer:evidence for a one-step transesterification mechanism. Cell 66:129-140.
    • (1991) Cell , vol.66 , pp. 129-140
    • Mizuuchi, K.1    Adzuma, K.2
  • 18
    • 0026330796 scopus 로고
    • HIV-1 DNA integration:mechanism of viral DNA cleavage and DNA strand transfer
    • Engelman A, Mizuuchi K, Craigie R. 1991. HIV-1 DNA integration:mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211-1221.
    • (1991) Cell , vol.67 , pp. 1211-1221
    • Engelman, A.1    Mizuuchi, K.2    Craigie, R.3
  • 19
    • 0034724557 scopus 로고    scopus 로고
    • Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases:Insights from phosphorothioate stereoselectivity
    • Kennedy AK, Haniford DB, Mizuuchi K. 2000. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases:Insights from phosphorothioate stereoselectivity. Cell 101:295-305.
    • (2000) Cell , vol.101 , pp. 295-305
    • Kennedy, A.K.1    Haniford, D.B.2    Mizuuchi, K.3
  • 20
    • 0028863006 scopus 로고
    • Disassembly of the Mu transposase tetramer by the ClpX chaperone
    • Levchenko I, Luo L, Baker TA. 1995. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 9:2399-2408.
    • (1995) Genes Dev , vol.9 , pp. 2399-2408
    • Levchenko, I.1    Luo, L.2    Baker, T.A.3
  • 21
    • 0030050236 scopus 로고    scopus 로고
    • The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site
    • Bolland S, Kleckner N. 1996. The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell 84:223-233.
    • (1996) Cell , vol.84 , pp. 223-233
    • Bolland, S.1    Kleckner, N.2
  • 22
    • 84896819934 scopus 로고    scopus 로고
    • Calcium inhibition of Ribonuclease H1 two-metal ion catalysis
    • Rosta E, Yang W, Hummer G. 2014. Calcium inhibition of Ribonuclease H1 two-metal ion catalysis. J Am Chem Soc 136:3137-3144.
    • (2014) J Am Chem Soc , vol.136 , pp. 3137-3144
    • Rosta, E.1    Yang, W.2    Hummer, G.3
  • 23
    • 0029096898 scopus 로고
    • The phage Mu transpososome core:DNA requirements for assembly and function
    • Savilahti H, Rice PA, Mizuuchi K. 1995. The phage Mu transpososome core:DNA requirements for assembly and function. EMBO J 14:4893-4903.
    • (1995) EMBO J , vol.14 , pp. 4893-4903
    • Savilahti, H.1    Rice, P.A.2    Mizuuchi, K.3
  • 24
    • 0027184481 scopus 로고
    • A general two-metal-ion mechanism for catalytic RNA
    • Steitz TA, Steitz JA. 1993. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90:6498-6502.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 6498-6502
    • Steitz, T.A.1    Steitz, J.A.2
  • 25
    • 24644492337 scopus 로고    scopus 로고
    • Structural evidence for a two-metal-ion mechanism of group I intron splicing
    • Stahley MR, Strobel SA. 2005. Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587-1590.
    • (2005) Science , vol.309 , pp. 1587-1590
    • Stahley, M.R.1    Strobel, S.A.2
  • 26
    • 59649101866 scopus 로고    scopus 로고
    • Retroviral integrase superfamily:the structural perspective
    • Nowotny M. 2009. Retroviral integrase superfamily:the structural perspective. EMBO Reports 10:144-151.
    • (2009) EMBO Reports , vol.10 , pp. 144-151
    • Nowotny, M.1
  • 27
    • 84863676249 scopus 로고    scopus 로고
    • Watching DNA polymerase ? make a phosphodiester bond
    • Nakamura T, Zhao Y, Yamagata Y, Hua YJ, Yang W. 2012. Watching DNA polymerase ? make a phosphodiester bond. Nature 487:196-201.
    • (2012) Nature , vol.487 , pp. 196-201
    • Nakamura, T.1    Zhao, Y.2    Yamagata, Y.3    Hua, Y.J.4    Yang, W.5
  • 28
    • 25144496154 scopus 로고    scopus 로고
    • Transposition of ISHp608, member of an unusual family of bacterial insertion sequences
    • Ton-Hoang B, Guynet C, Ronning DR, Cointin-Marty B, Dyda F, Chandler M. 2005. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J 24:3325-3338.
    • (2005) EMBO J , vol.24 , pp. 3325-3338
    • Ton-Hoang, B.1    Guynet, C.2    Ronning, D.R.3    Cointin-Marty, B.4    Dyda, F.5    Chandler, M.6
  • 30
  • 31
    • 38649116679 scopus 로고    scopus 로고
    • Mechanism of IS200/IS605 family DNA transposases:Activation and transposon-directed target site selection
    • Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F. 2008. Mechanism of IS200/IS605 family DNA transposases:Activation and transposon-directed target site selection. Cell 132:208-220.
    • (2008) Cell , vol.132 , pp. 208-220
    • Barabas, O.1    Ronning, D.R.2    Guynet, C.3    Hickman, A.B.4    Ton-Hoang, B.5    Chandler, M.6    Dyda, F.7
  • 33
    • 80455178800 scopus 로고    scopus 로고
    • Reconstitution of a functional IS608 single-strand transpososome:role of non-canonical base pairing
    • He S, Hickman AB, Dyda F, Johnson NP, Chandler M, Ton-Hoang B. 2011. Reconstitution of a functional IS608 single-strand transpososome:role of non-canonical base pairing. Nucl Acids Res 39:8503-8512.
    • (2011) Nucl Acids Res , vol.39 , pp. 8503-8512
    • He, S.1    Hickman, A.B.2    Dyda, F.3    Johnson, N.P.4    Chandler, M.5    Ton-Hoang, B.6
  • 35
    • 0036671409 scopus 로고    scopus 로고
    • Structural unity among viral origin binding proteins:Crystal structure of the nuclease domain of adeno-associated virus Rep
    • Hickman AB, Ronning DR, Kotin RM, Dyda F. 2002. Structural unity among viral origin binding proteins:Crystal structure of the nuclease domain of adeno-associated virus Rep. Mol Cell 10:327-337.
    • (2002) Mol Cell , vol.10 , pp. 327-337
    • Hickman, A.B.1    Ronning, D.R.2    Kotin, R.M.3    Dyda, F.4
  • 36
    • 0242542025 scopus 로고    scopus 로고
    • Structural insights into single-stranded DNA binding and cleavage by F factor TraI
    • Datta S, Larkin C, Schildbach JF. 2003. Structural insights into single-stranded DNA binding and cleavage by F factor TraI. Struct 11:1369-1379.
    • (2003) Struct , vol.11 , pp. 1369-1379
    • Datta, S.1    Larkin, C.2    Schildbach, J.F.3
  • 37
    • 33646850212 scopus 로고    scopus 로고
    • Unveiling the molecular mechanism of a conjugative relaxase:The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site
    • Boer R, Russi S, Guasch A, Lucas M, Blanco AG, Pérez-Luque R, Coll M, de la Cruz F. 2006. Unveiling the molecular mechanism of a conjugative relaxase:The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. J Mol Biol 358:857-869.
    • (2006) J Mol Biol , vol.358 , pp. 857-869
    • Boer, R.1    Russi, S.2    Guasch, A.3    Lucas, M.4    Blanco, A.G.5    Pérez-Luque, R.6    Coll, M.7    de la Cruz, F.8
  • 38
    • 33745125702 scopus 로고    scopus 로고
    • ISCR elements:Novel gene-capturing systems of the 21st century?
    • Toleman MA, Bennett PM, Walsh TR. 2006. ISCR elements:Novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 70:296-316.
    • (2006) Microbiol Mol Biol Rev , vol.70 , pp. 296-316
    • Toleman, M.A.1    Bennett, P.M.2    Walsh, T.R.3
  • 40
    • 76749135815 scopus 로고    scopus 로고
    • Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases:implications for REP evolution and dynamics in bacterial genomes
    • Nunvar J, Huckova T, Licha I. 2010. Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases:implications for REP evolution and dynamics in bacterial genomes. BMC Genomics 11:44.
    • (2010) BMC Genomics , vol.11 , pp. 44
    • Nunvar, J.1    Huckova, T.2    Licha, I.3
  • 41
    • 0035902449 scopus 로고    scopus 로고
    • Rolling-circle transposons in eukaryotes
    • Kapitonov VV, Jurka J. 2001. Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714-8719.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8714-8719
    • Kapitonov, V.V.1    Jurka, J.2
  • 42
    • 0035979218 scopus 로고    scopus 로고
    • Treasures in the attic:Rolling circle transposons discovered in eukaryotic genomes
    • Feschotte C, Wessler SR. 2001. Treasures in the attic:Rolling circle transposons discovered in eukaryotic genomes. Proc Natl Acad Sci USA 98:8923-8924.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8923-8924
    • Feschotte, C.1    Wessler, S.R.2
  • 43
    • 33846931279 scopus 로고    scopus 로고
    • Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus
    • Pritham EJ, Feschotte C. 2007. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 104:1895-1900.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 1895-1900
    • Pritham, E.J.1    Feschotte, C.2
  • 44
    • 0033806018 scopus 로고    scopus 로고
    • Functional organization and insertion specificity of IS607, a chimeric element of Helicobacter pylori
    • Kersulyte D, Mukhopadhyay AK, Shirai M, Nakazawa T, Berg DE. 2000. Functional organization and insertion specificity of IS607, a chimeric element of Helicobacter pylori. J Bacteriol 182:5300-5308.
    • (2000) J Bacteriol , vol.182 , pp. 5300-5308
    • Kersulyte, D.1    Mukhopadhyay, A.K.2    Shirai, M.3    Nakazawa, T.4    Berg, D.E.5
  • 45
    • 84887046121 scopus 로고    scopus 로고
    • A proposed mechanism for IS607-family serine transposases
    • Boocock MR, Rice PA. 2013. A proposed mechanism for IS607-family serine transposases. Mobile DNA 4:24.
    • (2013) Mobile DNA , vol.4 , pp. 24
    • Boocock, M.R.1    Rice, P.A.2
  • 46
    • 0028998170 scopus 로고
    • Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens:the TnpX sitespecific recombinase excises a circular transposon molecule
    • Bannam TL, Crellin PK, Rood JI. 1995. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens:the TnpX sitespecific recombinase excises a circular transposon molecule. Mol Microbiol 16:535-551.
    • (1995) Mol Microbiol , vol.16 , pp. 535-551
    • Bannam, T.L.1    Crellin, P.K.2    Rood, J.I.3
  • 47
    • 0033710355 scopus 로고    scopus 로고
    • Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX
    • Lyras D, Rood JI. 2000. Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX. Mol Microbiol 38:588-601.
    • (2000) Mol Microbiol , vol.38 , pp. 588-601
    • Lyras, D.1    Rood, J.I.2
  • 49
    • 33745447767 scopus 로고    scopus 로고
    • The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site
    • Wang H, Smith MCM, Mullany P. 2006. The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site. J Bacteriol 188:4871-4878.
    • (2006) J Bacteriol , vol.188 , pp. 4871-4878
    • Wang, H.1    Smith, M.C.M.2    Mullany, P.3
  • 51
    • 0025678617 scopus 로고
    • The crystal structure of the catalytic domain of the site-specific recombination enzyme ?d resolvase at 2.7 A ° resolution
    • Sanderson MR, Freemont PS, Rice PA, Goldman A, Hatfull GF, Grindley NDF, Steitz TA. 1990. The crystal structure of the catalytic domain of the site-specific recombination enzyme ?d resolvase at 2.7 A ° resolution. Cell 63:1323-1329.
    • (1990) Cell , vol.63 , pp. 1323-1329
    • Sanderson, M.R.1    Freemont, P.S.2    Rice, P.A.3    Goldman, A.4    Hatfull, G.F.5    Grindley, N.D.F.6    Steitz, T.A.7
  • 52
    • 23844514076 scopus 로고    scopus 로고
    • Structure of a synaptic ?d resolvase tetramer covalently linked to two cleaved DNAs
    • Li W, Kamtekar S, Xiong Y, Sarkis GJ, Grindley NDF, Steitz TA. 2005. Structure of a synaptic ?d resolvase tetramer covalently linked to two cleaved DNAs. Science 309:1210-1215.
    • (2005) Science , vol.309 , pp. 1210-1215
    • Li, W.1    Kamtekar, S.2    Xiong, Y.3    Sarkis, G.J.4    Grindley, N.D.F.5    Steitz, T.A.6
  • 55
    • 0030904786 scopus 로고    scopus 로고
    • Molecular organization in site-specific recombination:The catalytic domain of bacteriophage HP1 integrase at 2.7A° resolution
    • Hickman AB, Waninger S, Scocca JJ, Dyda F. 1997. Molecular organization in site-specific recombination:The catalytic domain of bacteriophage HP1 integrase at 2.7A° resolution. Cell 89:227-237.
    • (1997) Cell , vol.89 , pp. 227-237
    • Hickman, A.B.1    Waninger, S.2    Scocca, J.J.3    Dyda, F.4
  • 56
    • 0001656001 scopus 로고    scopus 로고
    • Flexibility in DNA recombination:Structure of the lambda integrase catalytic core
    • Kwon HJ, Tirumalai R, Landy A, Ellenberger T. 1997. Flexibility in DNA recombination:Structure of the lambda integrase catalytic core. Science 276:126-131.
    • (1997) Science , vol.276 , pp. 126-131
    • Kwon, H.J.1    Tirumalai, R.2    Landy, A.3    Ellenberger, T.4
  • 57
    • 0041375463 scopus 로고    scopus 로고
    • New insight into site-specific recombination from Flp recombinase-DNA structures
    • Chen Y, Rice PA. 2003. New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32:135-159.
    • (2003) Annu Rev Biophys Biomol Struct , vol.32 , pp. 135-159
    • Chen, Y.1    Rice, P.A.2
  • 58
    • 66249099218 scopus 로고    scopus 로고
    • A modular master on the move:the Tn916 family of mobile genetic elements
    • Roberts AP, Mullany P. 2009. A modular master on the move:the Tn916 family of mobile genetic elements. Trends Microbiol 17:251-258.
    • (2009) Trends Microbiol , vol.17 , pp. 251-258
    • Roberts, A.P.1    Mullany, P.2
  • 59
    • 84891609711 scopus 로고    scopus 로고
    • Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events
    • Waters JL, Salyers AA. 2013. Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events. mBio 4:e00569-13.
    • (2013) mBio , vol.4 , pp. e00569-13
    • Waters, J.L.1    Salyers, A.A.2
  • 60
    • 60349094186 scopus 로고    scopus 로고
    • Atypical association of DDE transposition with conjugation specifies a new family of mobile element
    • Brochet M, Da Cunha V, Couvé E, Rusniok C, Trieu-Cuot P, Glaser P. 2009. Atypical association of DDE transposition with conjugation specifies a new family of mobile element. Mol Microbiol 71:948-959.
    • (2009) Mol Microbiol , vol.71 , pp. 948-959
    • Brochet, M.1    Da Cunha, V.2    Couvé, E.3    Rusniok, C.4    Trieu-Cuot, P.5    Glaser, P.6
  • 61
    • 84902952147 scopus 로고    scopus 로고
    • The diversity of prokaryotic DDE transposases of the Mutator superfamily, insertion specificity, and association with conjugation machineries
    • Guérillot R, Siguier P, Gourbeyre E, Chandler M, Glaser P. 2014. The diversity of prokaryotic DDE transposases of the Mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol 6:260-272.
    • (2014) Genome Biol Evol , vol.6 , pp. 260-272
    • Guérillot, R.1    Siguier, P.2    Gourbeyre, E.3    Chandler, M.4    Glaser, P.5
  • 62
    • 84891491965 scopus 로고    scopus 로고
    • The Mu story:how a maverick phage moved the field forward
    • Harshey RM. 2012. The Mu story:how a maverick phage moved the field forward. Mobile DNA 3:21.
    • (2012) Mobile DNA , vol.3 , pp. 21
    • Harshey, R.M.1
  • 63
    • 0026637325 scopus 로고
    • Transpositional recombination:Mechanistic insights from studies of Mu and other elements
    • Mizuuchi K. 1992. Transpositional recombination:Mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 61:1011-1051.
    • (1992) Annu Rev Biochem , vol.61 , pp. 1011-1051
    • Mizuuchi, K.1
  • 64
    • 36549087125 scopus 로고    scopus 로고
    • Translation factor IF2 at the interface of transposition and replication by the PriA-PriC pathway
    • North SH, Kirtland SE, Nakai H. 2007. Translation factor IF2 at the interface of transposition and replication by the PriA-PriC pathway. Mol Microbiol 66:1566-1578.
    • (2007) Mol Microbiol , vol.66 , pp. 1566-1578
    • North, S.H.1    Kirtland, S.E.2    Nakai, H.3
  • 65
    • 0033546121 scopus 로고    scopus 로고
    • Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate
    • Jones JM, Nakai H. 1999. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J Mol Biol 289:503-515.
    • (1999) J Mol Biol , vol.289 , pp. 503-515
    • Jones, J.M.1    Nakai, H.2
  • 66
    • 6344284218 scopus 로고    scopus 로고
    • Requirement of IS911 replication before integration defines a new bacterial transposition pathway
    • Duval-Valentin G, Marty-Cointin B, Chandler M. 2004. Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J 23:3897-3906.
    • (2004) EMBO J , vol.23 , pp. 3897-3906
    • Duval-Valentin, G.1    Marty-Cointin, B.2    Chandler, M.3
  • 67
    • 0032481375 scopus 로고    scopus 로고
    • Efficient transposition of IS911 circles in vitro
    • Ton-Hoang B, Polard P, Chandler M. 1998. Efficient transposition of IS911 circles in vitro. EMBO J 17:1169-1181.
    • (1998) EMBO J , vol.17 , pp. 1169-1181
    • Ton-Hoang, B.1    Polard, P.2    Chandler, M.3
  • 68
    • 0028840748 scopus 로고
    • An in vivo transposasecatalyzed single-stranded DNA circularization reaction
    • Polard P, Chandler M. 1995. An in vivo transposasecatalyzed single-stranded DNA circularization reaction. Genes Dev 9:2846-2858.
    • (1995) Genes Dev , vol.9 , pp. 2846-2858
    • Polard, P.1    Chandler, M.2
  • 69
    • 18244413221 scopus 로고    scopus 로고
    • Assembly of a strong promoter following IS911 circularization and the role of circles in transposition
    • Ton-Hoang B, Bétermier M, Polard P, Chandler M. 1997. Assembly of a strong promoter following IS911 circularization and the role of circles in transposition. EMBO J 16:3357-3371.
    • (1997) EMBO J , vol.16 , pp. 3357-3371
    • Ton-Hoang, B.1    Bétermier, M.2    Polard, P.3    Chandler, M.4
  • 70
    • 0034213049 scopus 로고    scopus 로고
    • Playing second fiddle:second-strand processing and liberation of transposable elements from donor DNA
    • Turlan C, Chandler M. 2000. Playing second fiddle:second-strand processing and liberation of transposable elements from donor DNA. Trends Microbiol 8:268-274.
    • (2000) Trends Microbiol , vol.8 , pp. 268-274
    • Turlan, C.1    Chandler, M.2
  • 71
    • 77249135986 scopus 로고    scopus 로고
    • Integrating prokaryotes and eukaryotes:DNA transposases in light of structure
    • Hickman AB, Chandler M, Dyda F. 2010. Integrating prokaryotes and eukaryotes:DNA transposases in light of structure. Crit Rev Biochem Mol Biol 45:50-69.
    • (2010) Crit Rev Biochem Mol Biol , vol.45 , pp. 50-69
    • Hickman, A.B.1    Chandler, M.2    Dyda, F.3
  • 72
    • 0037248592 scopus 로고    scopus 로고
    • Excision of the Drosophila mariner transposon Mos1:Comparison with bacterial transposition and V(D)J recombination
    • Dawson A, Finnegan DJ. 2003. Excision of the Drosophila mariner transposon Mos1:Comparison with bacterial transposition and V(D)J recombination. Mol Cell 11:225-235.
    • (2003) Mol Cell , vol.11 , pp. 225-235
    • Dawson, A.1    Finnegan, D.J.2
  • 73
    • 75649086128 scopus 로고    scopus 로고
    • Transposition of the human Hsmar1 transposon:rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage
    • Claeys Bouuaert C, Chalmers R. 2010. Transposition of the human Hsmar1 transposon:rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucl Acids Res 38:190-202.
    • (2010) Nucl Acids Res , vol.38 , pp. 190-202
    • Claeys Bouuaert, C.1    Chalmers, R.2
  • 74
    • 0029818461 scopus 로고    scopus 로고
    • A purified mariner transposase is sufficient to mediate transposition in vitro
    • Lampe DJ, Churchill MEA, Robertson HM. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15:5470-5479.
    • (1996) EMBO J , vol.15 , pp. 5470-5479
    • Lampe, D.J.1    Churchill, M.E.A.2    Robertson, H.M.3
  • 75
    • 0030847553 scopus 로고    scopus 로고
    • Drosophila P-element transposase is a novel site-specific endonuclease
    • Beall EL, Rio DC. 1997. Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev 11:2137-2151.
    • (1997) Genes Dev , vol.11 , pp. 2137-2151
    • Beall, E.L.1    Rio, D.C.2
  • 77
    • 41949108098 scopus 로고    scopus 로고
    • piggyBac can bypass DNA synthesis during cut and paste transposition
    • Mitra R, Fain-Thornton J, Craig NL. 2008. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 27:1097-1109.
    • (2008) EMBO J , vol.27 , pp. 1097-1109
    • Mitra, R.1    Fain-Thornton, J.2    Craig, N.L.3
  • 78
    • 11144245992 scopus 로고    scopus 로고
    • Transposition of hAT elements links transposable elements and V(D)J recombination
    • Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL. 2004. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995-1001.
    • (2004) Nature , vol.432 , pp. 995-1001
    • Zhou, L.1    Mitra, R.2    Atkinson, P.W.3    Hickman, A.B.4    Dyda, F.5    Craig, N.L.6
  • 79
    • 80355122714 scopus 로고    scopus 로고
    • V(D)J recombination:Mechanisms of initiation
    • Schatz DG, Swanson PC. 2011. V(D)J recombination:Mechanisms of initiation. Annu Rev Genet 45:167-202.
    • (2011) Annu Rev Genet , vol.45 , pp. 167-202
    • Schatz, D.G.1    Swanson, P.C.2
  • 80
    • 22744445703 scopus 로고    scopus 로고
    • RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons
    • Kapitonov VV, Jurka J. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:e181.
    • (2005) PLoS Biol , vol.3 , pp. e181
    • Kapitonov, V.V.1    Jurka, J.2
  • 81
    • 35348973425 scopus 로고    scopus 로고
    • Analysis of P element transposase protein-DNA interactions during the early stages of transposition
    • Tang M, Cecconi C, Bustamante C, Rio DC. 2007. Analysis of P element transposase protein-DNA interactions during the early stages of transposition. J Biol Chem 282:29002-29012.
    • (2007) J Biol Chem , vol.282 , pp. 29002-29012
    • Tang, M.1    Cecconi, C.2    Bustamante, C.3    Rio, D.C.4
  • 82
    • 0034677674 scopus 로고    scopus 로고
    • A minimal system for Tn7 transposition:The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species
    • Biery MC, Lopata M, Craig NL. 2000. A minimal system for Tn7 transposition:The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J Mol Biol 297:25-37.
    • (2000) J Mol Biol , vol.297 , pp. 25-37
    • Biery, M.C.1    Lopata, M.2    Craig, N.L.3
  • 83
    • 84878438111 scopus 로고    scopus 로고
    • Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase
    • Choi KY, Li Y, Sarnovsky R, Craig NL. 2013. Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase. Proc Natl Acad Sci USA 110:E2038-E2045.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E2038-E2045
    • Choi, K.Y.1    Li, Y.2    Sarnovsky, R.3    Craig, N.L.4
  • 84
    • 0033634859 scopus 로고    scopus 로고
    • Unexpected structural diversity in DNA recombination:The restriction endonuclease connection
    • Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F. 2000. Unexpected structural diversity in DNA recombination:The restriction endonuclease connection. Mol Cell 5:1025-1034.
    • (2000) Mol Cell , vol.5 , pp. 1025-1034
    • Hickman, A.B.1    Li, Y.2    Mathew, S.V.3    May, E.W.4    Craig, N.L.5    Dyda, F.6
  • 85
    • 0029984672 scopus 로고    scopus 로고
    • Switching from cut-andpaste to replicative Tn7 transposition
    • May EW, Craig NL. 1996. Switching from cut-andpaste to replicative Tn7 transposition. Science 272:401-404.
    • (1996) Science , vol.272 , pp. 401-404
    • May, E.W.1    Craig, N.L.2
  • 86
    • 0034616993 scopus 로고    scopus 로고
    • Three-dimensional structure of the Tn5 synaptic complex transposition intermediate
    • Davies DR, Goryshin IY, Reznikoff WS, Rayment I. 2000. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289:77-85.
    • (2000) Science , vol.289 , pp. 77-85
    • Davies, D.R.1    Goryshin, I.Y.2    Reznikoff, W.S.3    Rayment, I.4
  • 87
    • 70149109999 scopus 로고    scopus 로고
    • Molecular architecture of the Mos1 pairedend complex:The structural basis of DNA transposition in a eukaryote
    • Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. 2009. Molecular architecture of the Mos1 pairedend complex:The structural basis of DNA transposition in a eukaryote. Cell 138:1096-1108.
    • (2009) Cell , vol.138 , pp. 1096-1108
    • Richardson, J.M.1    Colloms, S.D.2    Finnegan, D.J.3    Walkinshaw, M.D.4
  • 88
    • 84904538844 scopus 로고    scopus 로고
    • Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica
    • Hickman AB, et al. 2014. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica. Cell 158:353-367.
    • (2014) Cell , vol.158 , pp. 353-367
    • Hickman, A.B.1
  • 89
    • 84870812689 scopus 로고    scopus 로고
    • The emerging diversity of transpososome architectures
    • Dyda F, Chandler M, Hickman AB. 2012. The emerging diversity of transpososome architectures. Quart Rev Biophys 45:493-521.
    • (2012) Quart Rev Biophys , vol.45 , pp. 493-521
    • Dyda, F.1    Chandler, M.2    Hickman, A.B.3
  • 90
    • 84869090034 scopus 로고    scopus 로고
    • The Mu transpososome structure sheds light on DDE recombinase evolution
    • Montano SP, Pigli YZ, Rice PA. 2012. The Mu transpososome structure sheds light on DDE recombinase evolution. Nature 491:413-417.
    • (2012) Nature , vol.491 , pp. 413-417
    • Montano, S.P.1    Pigli, Y.Z.2    Rice, P.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.