메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments

Author keywords

Experimental design; FDR; Power analysis; RNA seq; Sample size calculation

Indexed keywords

ALGORITHMS; DESIGN OF EXPERIMENTS; ERROR ANALYSIS; POWER CONTROL; RNA; STATISTICAL TESTS; STATISTICS;

EID: 84965043970     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-0994-9     Document Type: Article
Times cited : (79)

References (26)
  • 1
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics. 2007; 23:2881-87.
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 2
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics. 2008; 9:321-32.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 3
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 4
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40:4288-97.
    • (2012) Nucleic Acids Res , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 5
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 6
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014; 15(12):550.
    • (2014) Genome Biol , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 7
    • 84879198972 scopus 로고    scopus 로고
    • Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates
    • Article 8
    • Lund SP, Nettleton D, McCarthy DJ, Smyth GK. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol. 2012; 11:Article 8.
    • (2012) Stat Appl Genet Mol Biol , vol.11
    • Lund, S.P.1    Nettleton, D.2    McCarthy, D.J.3    Smyth, G.K.4
  • 8
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 9
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Article 3
    • Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004; 3:Article 3.
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Smyth, G.K.1
  • 10
    • 79955756836 scopus 로고    scopus 로고
    • Design and validation issues in RNA-seq experiments
    • Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief Bioinform. 2011; 12:280-87.
    • (2011) Brief Bioinform , vol.12 , pp. 280-287
    • Fang, Z.1    Cui, X.2
  • 12
    • 84965027698 scopus 로고    scopus 로고
    • Calculating samplesSize estimates for RNA Seq studies
    • R package version 1.10.0.
    • Therneau T, Hart S, Kocher J-P. Calculating samplesSize estimates for RNA Seq studies. R package version 1.10.0. https://bioconductor.org/packages/release/bioc/html/RNASeqPower.html.
    • Therneau, T.1    Hart, S.2    Kocher, J.-P.3
  • 13
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995; 57:289-300.
    • (1995) J R Stat Soc B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 14
    • 34147178433 scopus 로고    scopus 로고
    • Quick calculation for sample size while controlling false discovery rate with application to microarray analysis
    • Liu P, Hwang JTG. Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics. 2007; 23(6):739-46.
    • (2007) Bioinformatics , vol.23 , Issue.6 , pp. 739-746
    • Liu, P.1    Hwang, J.T.G.2
  • 15
    • 84866150792 scopus 로고    scopus 로고
    • Sample size estimation while controlling false discovery rate for microarray experiments using ssize.fdr package
    • May 2009
    • Orr M, Liu P. Sample size estimation while controlling false discovery rate for microarray experiments using ssize.fdr package. The R J. 2009; 1(1, May 2009):47-53.
    • (2009) The R J , vol.1 , Issue.1 , pp. 47-53
    • Orr, M.1    Liu, P.2
  • 17
    • 84885030144 scopus 로고    scopus 로고
    • Sample size calculation for differential expression analysis of RNA-seq data under poisson distribution
    • Li CI, Su PF, Guo Y, Shyr Y. Sample size calculation for differential expression analysis of RNA-seq data under poisson distribution. Int J Comput Biol Drug Des. 2013; 6:358-75.
    • (2013) Int J Comput Biol Drug Des , vol.6 , pp. 358-375
    • Li, C.I.1    Su, P.F.2    Guo, Y.3    Shyr, Y.4
  • 18
    • 84889049862 scopus 로고    scopus 로고
    • Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data
    • Li CI, Su PF, Shyr Y. Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data. BMC Bioinforma. 2013; 14(1):357.
    • (2013) BMC Bioinforma , vol.14 , Issue.1 , pp. 357
    • Li, C.I.1    Su, P.F.2    Shyr, Y.3
  • 19
    • 85056632615 scopus 로고    scopus 로고
    • RnaSeqSampleSize: RnaSeqSampleSize.
    • R package version 1.2.0.
    • Zhao S, Li C, Guo Y, Sheng Q, Shyr Y. RnaSeqSampleSize: RnaSeqSampleSize. R package version 1.2.0. https://www.bioconductor.org/packages/release/bioc/html/RnaSeqSampleSize.html.
    • Zhao, S.1    Li, C.2    Guo, Y.3    Sheng, Q.4    Shyr, Y.5
  • 20
    • 84908127503 scopus 로고    scopus 로고
    • Power analysis and sample size estimation for RNA-Seq differential expression
    • Ching T, Huang S, Garmire LX. Power analysis and sample size estimation for RNA-Seq differential expression. RNA. 2014; 20(11):1684-96.
    • (2014) RNA , vol.20 , Issue.11 , pp. 1684-1696
    • Ching, T.1    Huang, S.2    Garmire, L.X.3
  • 21
    • 84928981375 scopus 로고    scopus 로고
    • PROPER: comprehensive power evaluation for differential expression using RNA-seq
    • Wu H, Wang C, Wu Z. PROPER: comprehensive power evaluation for differential expression using RNA-seq. Bioinformatics. 2015; 31:233-41.
    • (2015) Bioinformatics , vol.31 , pp. 233-241
    • Wu, H.1    Wang, C.2    Wu, Z.3
  • 22
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • Storey JD. A direct approach to false discovery rates. J R Stat Soc B. 2002; 64:479-98.
    • (2002) J R Stat Soc B , vol.64 , pp. 479-498
    • Storey, J.D.1
  • 23
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47.
    • (2015) Nucleic Acids Res , vol.43 , Issue.7 , pp. e47
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6
  • 24
    • 1142273091 scopus 로고    scopus 로고
    • Strong control, conservative point estimation and simultaneous rates: a unified approach
    • Storey JD, Taylor JE, Siegmund D. Strong control, conservative point estimation and simultaneous rates: a unified approach. J R Stat Soc B. 2004; 66:187-205.
    • (2004) J R Stat Soc B , vol.66 , pp. 187-205
    • Storey, J.D.1    Taylor, J.E.2    Siegmund, D.3
  • 25
    • 84908143081 scopus 로고    scopus 로고
    • Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes
    • Tausta SL, Li P, Si Y, Gandotra N, Liu P, Sun Q, Brutnell TP, Nelson T. Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. J Exp Bot. 2014; 65:3543-55.
    • (2014) J Exp Bot , vol.65 , pp. 3543-3555
    • Tausta, S.L.1    Li, P.2    Si, Y.3    Gandotra, N.4    Liu, P.5    Sun, Q.6    Brutnell, T.P.7    Nelson, T.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.