-
1
-
-
85083103921
-
The toughest triage—allocating ventilators in a pandemic
-
Truog, RD, Mitchell, C, Daley, GQ, The toughest triage—allocating ventilators in a pandemic. N Engl J Med 382 (2020), 1973–1975.
-
(2020)
N Engl J Med
, vol.382
, pp. 1973-1975
-
-
Truog, R.D.1
Mitchell, C.2
Daley, G.Q.3
-
2
-
-
85083072038
-
Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal
-
Wynants, L, Van Calster, B, Collins, GS, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ, 369, 2020, m1328.
-
(2020)
BMJ
, vol.369
-
-
Wynants, L.1
Van Calster, B.2
Collins, G.S.3
-
3
-
-
85089438604
-
Generalizing from a few examples: a survey on few-shot learning
-
published online March 29. (preprint)
-
Wang, Y, Yao, Q, Kwok, JT, Ni, LM, Generalizing from a few examples: a survey on few-shot learning. arXiv, 2020 published online March 29. https://doi.org/10.1145/3386252 (preprint).
-
(2020)
arXiv
-
-
Wang, Y.1
Yao, Q.2
Kwok, J.T.3
Ni, L.M.4
-
4
-
-
0034728356
-
What do we mean by validating a prognostic model?
-
Altman, DG, Royston, P, What do we mean by validating a prognostic model?. Stat Med 19 (2000), 453–473.
-
(2000)
Stat Med
, vol.19
, pp. 453-473
-
-
Altman, D.G.1
Royston, P.2
-
5
-
-
0033574245
-
Assessing the generalizability of prognostic information
-
Justice, AC, Covinsky, KE, Berlin, JA, Assessing the generalizability of prognostic information. Ann Intern Med 130 (1999), 515–524.
-
(1999)
Ann Intern Med
, vol.130
, pp. 515-524
-
-
Justice, A.C.1
Covinsky, K.E.2
Berlin, J.A.3
-
6
-
-
85080842382
-
Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers—from the radiology editorial board
-
Bluemke, DA, Moy, L, Bredella, MA, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers—from the radiology editorial board. Radiology 294 (2020), 487–489.
-
(2020)
Radiology
, vol.294
, pp. 487-489
-
-
Bluemke, D.A.1
Moy, L.2
Bredella, M.A.3
-
7
-
-
85083903238
-
Development and reporting of prediction models: guidance for authors from editors of respiratory, sleep, and critical care journals
-
Leisman, DE, Harhay, MO, Lederer, DJ, et al. Development and reporting of prediction models: guidance for authors from editors of respiratory, sleep, and critical care journals. Crit Care Med 48 (2020), 623–633.
-
(2020)
Crit Care Med
, vol.48
, pp. 623-633
-
-
Leisman, D.E.1
Harhay, M.O.2
Lederer, D.J.3
-
8
-
-
85008451521
-
Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view
-
Luo, W, Phung, D, Tran, T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res, 18, 2016, e323.
-
(2016)
J Med Internet Res
, vol.18
, pp. e323
-
-
Luo, W.1
Phung, D.2
Tran, T.3
-
9
-
-
85089746037
-
Hospitals are using AI to predict the decline of Covid-19 patients—before knowing it works. April 24, 2020. Stat
-
(Accessed 31 May 2020)
-
Ross, C, Hospitals are using AI to predict the decline of Covid-19 patients—before knowing it works. April 24, 2020. Stat. https://www.statnews.com/2020/04/24/coronavirus-hospitals-use-ai-to-predict-patient-decline-before-knowing-it-works. (Accessed 31 May 2020)
-
-
-
Ross, C.1
-
10
-
-
85067366274
-
Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India
-
Gulshan, V, Rajan, RP, Widner, K, et al. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India. JAMA Ophthalmol 137 (2019), 987–993.
-
(2019)
JAMA Ophthalmol
, vol.137
, pp. 987-993
-
-
Gulshan, V.1
Rajan, R.P.2
Widner, K.3
-
11
-
-
85056277365
-
Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study
-
Zech, JR, Badgeley, MA, Liu, M, Costa, AB, Titano, JJ, Oermann, EK, Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med, 15, 2018, e1002683.
-
(2018)
PLoS Med
, vol.15
-
-
Zech, J.R.1
Badgeley, M.A.2
Liu, M.3
Costa, A.B.4
Titano, J.J.5
Oermann, E.K.6
-
12
-
-
85082505268
-
Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies
-
Nagendran, M, Chen, Y, Lovejoy, CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 368, 2020, m689.
-
(2020)
BMJ
, vol.368
, pp. m689
-
-
Nagendran, M.1
Chen, Y.2
Lovejoy, C.A.3
-
13
-
-
85058893400
-
Minimal impact of implemented early warning score and best practice alert for patient deterioration
-
Bedoya, AD, Clement, ME, Phelan, M, Steorts, RC, O'Brien, C, Goldstein, BA, Minimal impact of implemented early warning score and best practice alert for patient deterioration. Crit Care Med 47 (2019), 49–55.
-
(2019)
Crit Care Med
, vol.47
, pp. 49-55
-
-
Bedoya, A.D.1
Clement, M.E.2
Phelan, M.3
Steorts, R.C.4
O'Brien, C.5
Goldstein, B.A.6
-
14
-
-
85029693202
-
Strengths and limitations of early warning scores: a systematic review and narrative synthesis
-
Downey, CL, Tahir, W, Randell, R, Brown, JM, Jayne, DG, Strengths and limitations of early warning scores: a systematic review and narrative synthesis. Int J Nurs Stud 76 (2017), 106–119.
-
(2017)
Int J Nurs Stud
, vol.76
, pp. 106-119
-
-
Downey, C.L.1
Tahir, W.2
Randell, R.3
Brown, J.M.4
Jayne, D.G.5
-
15
-
-
85085156752
-
Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology
-
Gerry, S, Bonnici, T, Birks, J, et al. Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology. BMJ, 369, 2020, m1501.
-
(2020)
BMJ
, vol.369
-
-
Gerry, S.1
Bonnici, T.2
Birks, J.3
-
16
-
-
85055475795
-
The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care
-
Komorowski, M, Celi, LA, Badawi, O, Gordon, AC, Faisal, AA, The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 24 (2018), 1716–1720.
-
(2018)
Nat Med
, vol.24
, pp. 1716-1720
-
-
Komorowski, M.1
Celi, L.A.2
Badawi, O.3
Gordon, A.C.4
Faisal, A.A.5
-
17
-
-
0036431808
-
Evidence-based medicine, opinion-based medicine, and real-world medicine
-
Hampton, JR, Evidence-based medicine, opinion-based medicine, and real-world medicine. Perspect Biol Med 45 (2002), 549–568.
-
(2002)
Perspect Biol Med
, vol.45
, pp. 549-568
-
-
Hampton, J.R.1
-
18
-
-
85002412626
-
Real-world evidence—what is it and what can it tell us?
-
Sherman, RE, Anderson, SA, Dal Pan, GJ, et al. Real-world evidence—what is it and what can it tell us?. N Engl J Med 375 (2016), 2293–2297.
-
(2016)
N Engl J Med
, vol.375
, pp. 2293-2297
-
-
Sherman, R.E.1
Anderson, S.A.2
Dal Pan, G.J.3
-
19
-
-
85088068836
-
“Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets
-
Panch, T, Pollard, TJ, Mattie, H, Lindemer, E, Keane, PA, Celi, LA, “Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets. NPJ Digit Med, 3, 2020, 87.
-
(2020)
NPJ Digit Med
, vol.3
, pp. 87
-
-
Panch, T.1
Pollard, T.J.2
Mattie, H.3
Lindemer, E.4
Keane, P.A.5
Celi, L.A.6
-
20
-
-
33644931936
-
Bias in clinical intervention research
-
Gluud, LL, Bias in clinical intervention research. Am J Epidemiol 163 (2006), 493–501.
-
(2006)
Am J Epidemiol
, vol.163
, pp. 493-501
-
-
Gluud, L.L.1
-
21
-
-
0035822324
-
Systematic reviews in health care: assessing the quality of controlled clinical trials
-
Jüni, P, Altman, DG, Egger, M, Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ 323 (2001), 42–46.
-
(2001)
BMJ
, vol.323
, pp. 42-46
-
-
Jüni, P.1
Altman, D.G.2
Egger, M.3
-
22
-
-
34247530125
-
Factors that can affect the external validity of randomised controlled trials
-
Rothwell, PM, Factors that can affect the external validity of randomised controlled trials. PLoS Clin Trials, 1, 2006, e9.
-
(2006)
PLoS Clin Trials
, vol.1
, pp. e9
-
-
Rothwell, P.M.1
-
23
-
-
11444261579
-
External validity of randomised controlled trials: “To whom do the results of this trial apply?”
-
Rothwell, PM, External validity of randomised controlled trials: “To whom do the results of this trial apply?”. Lancet 365 (2005), 82–93.
-
(2005)
Lancet
, vol.365
, pp. 82-93
-
-
Rothwell, P.M.1
-
24
-
-
0031080885
-
An evaluation of machine-learning methods for predicting pneumonia mortality
-
Cooper, GF, Aliferis, CF, Ambrosino, R, et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med 9 (1997), 107–138.
-
(1997)
Artif Intell Med
, vol.9
, pp. 107-138
-
-
Cooper, G.F.1
Aliferis, C.F.2
Ambrosino, R.3
-
25
-
-
85032453950
-
Calibration drift in regression and machine learning models for acute kidney injury
-
Davis, SE, Lasko, TA, Chen, G, Siew, ED, Matheny, ME, Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc 24 (2017), 1052–1061.
-
(2017)
J Am Med Inform Assoc
, vol.24
, pp. 1052-1061
-
-
Davis, S.E.1
Lasko, T.A.2
Chen, G.3
Siew, E.D.4
Matheny, M.E.5
-
26
-
-
85161283968
-
Feature robustness in non-stationary health records: caveats to deployable model performance in common clinical machine learning tasks
-
Nestor, B, McDermott, MBA, Boag, W, et al. Feature robustness in non-stationary health records: caveats to deployable model performance in common clinical machine learning tasks. Proc Mach Learn Res 106 (2019), 1–23.
-
(2019)
Proc Mach Learn Res
, vol.106
, pp. 1-23
-
-
Nestor, B.1
McDermott, M.B.A.2
Boag, W.3
-
27
-
-
85061575306
-
Continual lifelong learning with neural networks: a review
-
Parisi, GI, Kemker, R, Part, JL, Kanan, C, Wermter, S, Continual lifelong learning with neural networks: a review. Neural Netw 113 (2019), 54–71.
-
(2019)
Neural Netw
, vol.113
, pp. 54-71
-
-
Parisi, G.I.1
Kemker, R.2
Part, J.L.3
Kanan, C.4
Wermter, S.5
-
28
-
-
85070473224
-
Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD): discussion paper and request for feedback
-
(Accessed 31 May 2020)
-
US FDA. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD): discussion paper and request for feedback. https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf, 2019. (Accessed 31 May 2020)
-
(2019)
-
-
-
29
-
-
85085292202
-
Clinical applications of continual learning machine learning
-
Lee, CS, Lee, AY, Clinical applications of continual learning machine learning. Lancet Digit Health 2 (2020), e279–e281.
-
(2020)
Lancet Digit Health
, vol.2
, pp. e279-e281
-
-
Lee, C.S.1
Lee, A.Y.2
-
30
-
-
85081286713
-
Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting
-
Wynants, L, Kent, DM, Timmerman, D, Lundquist, CM, Van Calster, B, Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting. Diagn Progn Res, 3, 2019, 6.
-
(2019)
Diagn Progn Res
, vol.3
, pp. 6
-
-
Wynants, L.1
Kent, D.M.2
Timmerman, D.3
Lundquist, C.M.4
Van Calster, B.5
-
31
-
-
84976645528
-
External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges
-
Riley, RD, Ensor, J, Snell, KIE, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ, 353, 2016, i3140.
-
(2016)
BMJ
, vol.353
-
-
Riley, R.D.1
Ensor, J.2
Snell, K.I.E.3
-
32
-
-
85046254953
-
Biases in electronic health record data due to processes within the healthcare system: retrospective observational study
-
Agniel, D, Kohane, IS, Weber, GM, Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ, 361, 2018, k1479.
-
(2018)
BMJ
, vol.361
-
-
Agniel, D.1
Kohane, I.S.2
Weber, G.M.3
-
33
-
-
84902385087
-
A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions
-
Wiens, J, Guttag, J, Horvitz, E, A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions. J Am Med Inform Assoc 21 (2014), 699–706.
-
(2014)
J Am Med Inform Assoc
, vol.21
, pp. 699-706
-
-
Wiens, J.1
Guttag, J.2
Horvitz, E.3
-
34
-
-
85097194114
-
A new insight into missing data in intensive care unit patient profiles: observational study
-
Sharafoddini, A, Dubin, JA, Maslove, DM, Lee, J, A new insight into missing data in intensive care unit patient profiles: observational study. JMIR Med Inform, 7, 2019, e11605.
-
(2019)
JMIR Med Inform
, vol.7
-
-
Sharafoddini, A.1
Dubin, J.A.2
Maslove, D.M.3
Lee, J.4
|