메뉴 건너뛰기




Volumn 2, Issue 9, 2020, Pages e489-e492

The myth of generalisability in clinical research and machine learning in health care

Author keywords

[No Author keywords available]

Indexed keywords

CLINICAL RESEARCH; MACHINE LEARNING; REVIEW;

EID: 85089745841     PISSN: None     EISSN: 25897500     Source Type: Journal    
DOI: 10.1016/S2589-7500(20)30186-2     Document Type: Review
Times cited : (281)

References (34)
  • 1
    • 85083103921 scopus 로고    scopus 로고
    • The toughest triage—allocating ventilators in a pandemic
    • Truog, RD, Mitchell, C, Daley, GQ, The toughest triage—allocating ventilators in a pandemic. N Engl J Med 382 (2020), 1973–1975.
    • (2020) N Engl J Med , vol.382 , pp. 1973-1975
    • Truog, R.D.1    Mitchell, C.2    Daley, G.Q.3
  • 2
    • 85083072038 scopus 로고    scopus 로고
    • Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal
    • Wynants, L, Van Calster, B, Collins, GS, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ, 369, 2020, m1328.
    • (2020) BMJ , vol.369
    • Wynants, L.1    Van Calster, B.2    Collins, G.S.3
  • 3
    • 85089438604 scopus 로고    scopus 로고
    • Generalizing from a few examples: a survey on few-shot learning
    • published online March 29. (preprint)
    • Wang, Y, Yao, Q, Kwok, JT, Ni, LM, Generalizing from a few examples: a survey on few-shot learning. arXiv, 2020 published online March 29. https://doi.org/10.1145/3386252 (preprint).
    • (2020) arXiv
    • Wang, Y.1    Yao, Q.2    Kwok, J.T.3    Ni, L.M.4
  • 4
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman, DG, Royston, P, What do we mean by validating a prognostic model?. Stat Med 19 (2000), 453–473.
    • (2000) Stat Med , vol.19 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 5
    • 0033574245 scopus 로고    scopus 로고
    • Assessing the generalizability of prognostic information
    • Justice, AC, Covinsky, KE, Berlin, JA, Assessing the generalizability of prognostic information. Ann Intern Med 130 (1999), 515–524.
    • (1999) Ann Intern Med , vol.130 , pp. 515-524
    • Justice, A.C.1    Covinsky, K.E.2    Berlin, J.A.3
  • 6
    • 85080842382 scopus 로고    scopus 로고
    • Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers—from the radiology editorial board
    • Bluemke, DA, Moy, L, Bredella, MA, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers—from the radiology editorial board. Radiology 294 (2020), 487–489.
    • (2020) Radiology , vol.294 , pp. 487-489
    • Bluemke, D.A.1    Moy, L.2    Bredella, M.A.3
  • 7
    • 85083903238 scopus 로고    scopus 로고
    • Development and reporting of prediction models: guidance for authors from editors of respiratory, sleep, and critical care journals
    • Leisman, DE, Harhay, MO, Lederer, DJ, et al. Development and reporting of prediction models: guidance for authors from editors of respiratory, sleep, and critical care journals. Crit Care Med 48 (2020), 623–633.
    • (2020) Crit Care Med , vol.48 , pp. 623-633
    • Leisman, D.E.1    Harhay, M.O.2    Lederer, D.J.3
  • 8
    • 85008451521 scopus 로고    scopus 로고
    • Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view
    • Luo, W, Phung, D, Tran, T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res, 18, 2016, e323.
    • (2016) J Med Internet Res , vol.18 , pp. e323
    • Luo, W.1    Phung, D.2    Tran, T.3
  • 9
    • 85089746037 scopus 로고    scopus 로고
    • Hospitals are using AI to predict the decline of Covid-19 patients—before knowing it works. April 24, 2020. Stat
    • (Accessed 31 May 2020)
    • Ross, C, Hospitals are using AI to predict the decline of Covid-19 patients—before knowing it works. April 24, 2020. Stat. https://www.statnews.com/2020/04/24/coronavirus-hospitals-use-ai-to-predict-patient-decline-before-knowing-it-works. (Accessed 31 May 2020)
    • Ross, C.1
  • 10
    • 85067366274 scopus 로고    scopus 로고
    • Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India
    • Gulshan, V, Rajan, RP, Widner, K, et al. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India. JAMA Ophthalmol 137 (2019), 987–993.
    • (2019) JAMA Ophthalmol , vol.137 , pp. 987-993
    • Gulshan, V.1    Rajan, R.P.2    Widner, K.3
  • 11
    • 85056277365 scopus 로고    scopus 로고
    • Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study
    • Zech, JR, Badgeley, MA, Liu, M, Costa, AB, Titano, JJ, Oermann, EK, Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med, 15, 2018, e1002683.
    • (2018) PLoS Med , vol.15
    • Zech, J.R.1    Badgeley, M.A.2    Liu, M.3    Costa, A.B.4    Titano, J.J.5    Oermann, E.K.6
  • 12
    • 85082505268 scopus 로고    scopus 로고
    • Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies
    • Nagendran, M, Chen, Y, Lovejoy, CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 368, 2020, m689.
    • (2020) BMJ , vol.368 , pp. m689
    • Nagendran, M.1    Chen, Y.2    Lovejoy, C.A.3
  • 13
    • 85058893400 scopus 로고    scopus 로고
    • Minimal impact of implemented early warning score and best practice alert for patient deterioration
    • Bedoya, AD, Clement, ME, Phelan, M, Steorts, RC, O'Brien, C, Goldstein, BA, Minimal impact of implemented early warning score and best practice alert for patient deterioration. Crit Care Med 47 (2019), 49–55.
    • (2019) Crit Care Med , vol.47 , pp. 49-55
    • Bedoya, A.D.1    Clement, M.E.2    Phelan, M.3    Steorts, R.C.4    O'Brien, C.5    Goldstein, B.A.6
  • 14
    • 85029693202 scopus 로고    scopus 로고
    • Strengths and limitations of early warning scores: a systematic review and narrative synthesis
    • Downey, CL, Tahir, W, Randell, R, Brown, JM, Jayne, DG, Strengths and limitations of early warning scores: a systematic review and narrative synthesis. Int J Nurs Stud 76 (2017), 106–119.
    • (2017) Int J Nurs Stud , vol.76 , pp. 106-119
    • Downey, C.L.1    Tahir, W.2    Randell, R.3    Brown, J.M.4    Jayne, D.G.5
  • 15
    • 85085156752 scopus 로고    scopus 로고
    • Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology
    • Gerry, S, Bonnici, T, Birks, J, et al. Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology. BMJ, 369, 2020, m1501.
    • (2020) BMJ , vol.369
    • Gerry, S.1    Bonnici, T.2    Birks, J.3
  • 16
    • 85055475795 scopus 로고    scopus 로고
    • The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care
    • Komorowski, M, Celi, LA, Badawi, O, Gordon, AC, Faisal, AA, The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 24 (2018), 1716–1720.
    • (2018) Nat Med , vol.24 , pp. 1716-1720
    • Komorowski, M.1    Celi, L.A.2    Badawi, O.3    Gordon, A.C.4    Faisal, A.A.5
  • 17
    • 0036431808 scopus 로고    scopus 로고
    • Evidence-based medicine, opinion-based medicine, and real-world medicine
    • Hampton, JR, Evidence-based medicine, opinion-based medicine, and real-world medicine. Perspect Biol Med 45 (2002), 549–568.
    • (2002) Perspect Biol Med , vol.45 , pp. 549-568
    • Hampton, J.R.1
  • 18
    • 85002412626 scopus 로고    scopus 로고
    • Real-world evidence—what is it and what can it tell us?
    • Sherman, RE, Anderson, SA, Dal Pan, GJ, et al. Real-world evidence—what is it and what can it tell us?. N Engl J Med 375 (2016), 2293–2297.
    • (2016) N Engl J Med , vol.375 , pp. 2293-2297
    • Sherman, R.E.1    Anderson, S.A.2    Dal Pan, G.J.3
  • 19
    • 85088068836 scopus 로고    scopus 로고
    • “Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets
    • Panch, T, Pollard, TJ, Mattie, H, Lindemer, E, Keane, PA, Celi, LA, “Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets. NPJ Digit Med, 3, 2020, 87.
    • (2020) NPJ Digit Med , vol.3 , pp. 87
    • Panch, T.1    Pollard, T.J.2    Mattie, H.3    Lindemer, E.4    Keane, P.A.5    Celi, L.A.6
  • 20
    • 33644931936 scopus 로고    scopus 로고
    • Bias in clinical intervention research
    • Gluud, LL, Bias in clinical intervention research. Am J Epidemiol 163 (2006), 493–501.
    • (2006) Am J Epidemiol , vol.163 , pp. 493-501
    • Gluud, L.L.1
  • 21
    • 0035822324 scopus 로고    scopus 로고
    • Systematic reviews in health care: assessing the quality of controlled clinical trials
    • Jüni, P, Altman, DG, Egger, M, Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ 323 (2001), 42–46.
    • (2001) BMJ , vol.323 , pp. 42-46
    • Jüni, P.1    Altman, D.G.2    Egger, M.3
  • 22
    • 34247530125 scopus 로고    scopus 로고
    • Factors that can affect the external validity of randomised controlled trials
    • Rothwell, PM, Factors that can affect the external validity of randomised controlled trials. PLoS Clin Trials, 1, 2006, e9.
    • (2006) PLoS Clin Trials , vol.1 , pp. e9
    • Rothwell, P.M.1
  • 23
    • 11444261579 scopus 로고    scopus 로고
    • External validity of randomised controlled trials: “To whom do the results of this trial apply?”
    • Rothwell, PM, External validity of randomised controlled trials: “To whom do the results of this trial apply?”. Lancet 365 (2005), 82–93.
    • (2005) Lancet , vol.365 , pp. 82-93
    • Rothwell, P.M.1
  • 24
    • 0031080885 scopus 로고    scopus 로고
    • An evaluation of machine-learning methods for predicting pneumonia mortality
    • Cooper, GF, Aliferis, CF, Ambrosino, R, et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med 9 (1997), 107–138.
    • (1997) Artif Intell Med , vol.9 , pp. 107-138
    • Cooper, G.F.1    Aliferis, C.F.2    Ambrosino, R.3
  • 25
    • 85032453950 scopus 로고    scopus 로고
    • Calibration drift in regression and machine learning models for acute kidney injury
    • Davis, SE, Lasko, TA, Chen, G, Siew, ED, Matheny, ME, Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc 24 (2017), 1052–1061.
    • (2017) J Am Med Inform Assoc , vol.24 , pp. 1052-1061
    • Davis, S.E.1    Lasko, T.A.2    Chen, G.3    Siew, E.D.4    Matheny, M.E.5
  • 26
    • 85161283968 scopus 로고    scopus 로고
    • Feature robustness in non-stationary health records: caveats to deployable model performance in common clinical machine learning tasks
    • Nestor, B, McDermott, MBA, Boag, W, et al. Feature robustness in non-stationary health records: caveats to deployable model performance in common clinical machine learning tasks. Proc Mach Learn Res 106 (2019), 1–23.
    • (2019) Proc Mach Learn Res , vol.106 , pp. 1-23
    • Nestor, B.1    McDermott, M.B.A.2    Boag, W.3
  • 27
  • 28
    • 85070473224 scopus 로고    scopus 로고
    • Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD): discussion paper and request for feedback
    • (Accessed 31 May 2020)
    • US FDA. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD): discussion paper and request for feedback. https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf, 2019. (Accessed 31 May 2020)
    • (2019)
  • 29
    • 85085292202 scopus 로고    scopus 로고
    • Clinical applications of continual learning machine learning
    • Lee, CS, Lee, AY, Clinical applications of continual learning machine learning. Lancet Digit Health 2 (2020), e279–e281.
    • (2020) Lancet Digit Health , vol.2 , pp. e279-e281
    • Lee, C.S.1    Lee, A.Y.2
  • 30
    • 85081286713 scopus 로고    scopus 로고
    • Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting
    • Wynants, L, Kent, DM, Timmerman, D, Lundquist, CM, Van Calster, B, Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting. Diagn Progn Res, 3, 2019, 6.
    • (2019) Diagn Progn Res , vol.3 , pp. 6
    • Wynants, L.1    Kent, D.M.2    Timmerman, D.3    Lundquist, C.M.4    Van Calster, B.5
  • 31
    • 84976645528 scopus 로고    scopus 로고
    • External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges
    • Riley, RD, Ensor, J, Snell, KIE, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ, 353, 2016, i3140.
    • (2016) BMJ , vol.353
    • Riley, R.D.1    Ensor, J.2    Snell, K.I.E.3
  • 32
    • 85046254953 scopus 로고    scopus 로고
    • Biases in electronic health record data due to processes within the healthcare system: retrospective observational study
    • Agniel, D, Kohane, IS, Weber, GM, Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ, 361, 2018, k1479.
    • (2018) BMJ , vol.361
    • Agniel, D.1    Kohane, I.S.2    Weber, G.M.3
  • 33
    • 84902385087 scopus 로고    scopus 로고
    • A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions
    • Wiens, J, Guttag, J, Horvitz, E, A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions. J Am Med Inform Assoc 21 (2014), 699–706.
    • (2014) J Am Med Inform Assoc , vol.21 , pp. 699-706
    • Wiens, J.1    Guttag, J.2    Horvitz, E.3
  • 34
    • 85097194114 scopus 로고    scopus 로고
    • A new insight into missing data in intensive care unit patient profiles: observational study
    • Sharafoddini, A, Dubin, JA, Maslove, DM, Lee, J, A new insight into missing data in intensive care unit patient profiles: observational study. JMIR Med Inform, 7, 2019, e11605.
    • (2019) JMIR Med Inform , vol.7
    • Sharafoddini, A.1    Dubin, J.A.2    Maslove, D.M.3    Lee, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.