-
1
-
-
85081983133
-
An interactive web-based dashboard to track COVID-19 in real time
-
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020:S1473-3099(20)30120-1. doi:10.1016/S1473-3099(20)30120-1
-
(2020)
Lancet Infect Dis
-
-
Dong, E.1
Du, H.2
Gardner, L.3
-
2
-
-
85081601171
-
COVID-19: A novel coronavirus and a novel challenge for critical care
-
Arabi YM, Murthy S, Webb S. COVID-19: a novel coronavirus and a novel challenge for critical care. Intensive Care Med 2020. doi:10.1007/s00134-020-05955-1
-
(2020)
Intensive Care Med
-
-
Arabi, Y.M.1
Murthy, S.2
Webb, S.3
-
3
-
-
85081656421
-
Critical care utilization for the COVID-19 outbreak in Lombardy Italy: Early experience and forecast during an emergency response
-
Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA 2020. doi:10.1001/jama.2020.4031
-
(2020)
JAMA
-
-
Grasselli, G.1
Pesenti, A.2
Cecconi, M.3
-
4
-
-
85081534615
-
Critical care crisis and some recommendations during the COVID-19 epidemic in China
-
Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med 2020. doi:10.1007/s00134-020-05979-7
-
(2020)
Intensive Care Med
-
-
Xie, J.1
Tong, Z.2
Guan, X.3
Du, B.4
Qiu, H.5
Slutsky, A.S.6
-
6
-
-
85083421234
-
-
Institute of Social and Preventive Medicine
-
Institute of Social and Preventive Medicine. Living evidence on COVID-19 2020. https://ispmbern.github.io/covid-19/living-review/index.html.
-
Living Evidence on COVID-19 2020
-
-
-
13
-
-
84908330513
-
Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist
-
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med 2014;11:e1001744. doi:10.1371/journal.pmed.1001744
-
(2014)
PLoS Med
, vol.11
, pp. e1001744
-
-
Moons, K.G.1
De Groot, J.A.2
Bouwmeester, W.3
-
14
-
-
85059273231
-
PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration
-
Moons KGM, Wolf RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med 2019;170:W1-33. doi:10.7326/M18-1377
-
(2019)
Ann Intern Med
, vol.170
, pp. W1-W33
-
-
Moons, K.G.M.1
Wolf, R.F.2
Riley, R.D.3
-
15
-
-
84920623458
-
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration
-
Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73. doi:10.7326/M14-0698
-
(2015)
Ann Intern Med
, vol.162
, pp. W1-W73
-
-
Moons, K.G.M.1
Altman, D.G.2
Reitsma, J.B.3
-
17
-
-
68049137869
-
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration
-
Liberati A, Altman DG, Tetzlaf J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6:e1000100. doi:10.1371/journal.pmed.1000100
-
(2009)
PLoS Med
, vol.6
, pp. e1000100
-
-
Liberati, A.1
Altman, D.G.2
Tetzlaf, J.3
-
22
-
-
85082082571
-
Association of radiologic fndings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China
-
Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic fndings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One 2020;15:e0230548. doi:10.1371/journal. pone.0230548
-
(2020)
PLoS One
, vol.15
-
-
Yuan, M.1
Yin, W.2
Tao, Z.3
Tan, W.4
Hu, Y.5
-
34
-
-
85083205134
-
Artifcial intelligence distinguishes covid-19 from community acquired pneumonia on chest CT
-
Li L, Qin L, Xu Z, et al. Artifcial intelligence distinguishes covid-19 from community acquired pneumonia on chest CT. Radiology 2020:200905. doi:10.1148/radiol.2020200905
-
(2020)
Radiology
, pp. 200905
-
-
Li, L.1
Qin, L.2
Xu, Z.3
-
37
-
-
85082023874
-
Host susceptibility to severe COVID-19 and establishment of a host risk score: Fndings of 487 cases outside Wuhan
-
Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: fndings of 487 cases outside Wuhan. Crit Care 2020;24:108. doi:10.1186/s13054-020-2833-7
-
(2020)
Crit Care
, vol.24
, pp. 108
-
-
Shi, Y.1
Yu, X.2
Zhao, H.3
Wang, H.4
Zhao, R.5
Sheng, J.6
-
41
-
-
85083451684
-
-
Renmin Hospital of Wuhan University & Wuhan EndoAngel Medical Technology Co
-
Renmin Hospital of Wuhan University & Wuhan EndoAngel Medical Technology Co. AI diagnostic system for 2019-nCoV 2020. http://121.40.75.149/znyx-ncov/index.
-
AI Diagnostic System for 2019-nCoV 2020
-
-
-
42
-
-
85083459604
-
-
National Supercomputing Center of Tianjin
-
National Supercomputing Center of Tianjin. Peunomnia CT 2020. https://ai.nscc-tj.cn/thai/deploy/public/pneumonia_ct.
-
Peunomnia CT 2020
-
-
-
44
-
-
85082019842
-
Calculating the sample size required for developing a clinical prediction model
-
Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ 2020;368:m441. doi:10.1136/bmj.m441
-
(2020)
BMJ
, vol.368
, pp. m441
-
-
Riley, R.D.1
Ensor, J.2
Snell, K.I.E.3
-
45
-
-
85077149933
-
Calibration: The Achilles heel of predictive analytics
-
Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Topic Group 'Evaluating diagnostic tests and prediction models' of the STRATOS initiative. Calibration: the Achilles heel of predictive analytics. BMC Med 2019;17:230. doi:10.1186/s12916-019-1466-7
-
(2019)
BMC Med
, vol.17
, pp. 230
-
-
Van Calster, B.1
McLernon, D.J.2
Van Smeden, M.3
Wynants, L.4
Steyerberg, E.W.5
-
47
-
-
84957837271
-
Introduction to the analysis of survival data in the presence of competing risks
-
Austin PC, Lee DS, Fine J P. Introduction to the analysis of survival data in the presence of competing risks. Circulation 2016;133:601-9. doi:10.1161/CIRCULATIONAHA.115.017719
-
(2016)
Circulation
, vol.133
, pp. 601-609
-
-
Austin, P.C.1
Lee, D.S.2
Fine, J.P.3
-
48
-
-
84976645528
-
External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges [correction: BMJ 2019;365:l4379]
-
Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges [correction: BMJ 2019;365:l4379]. BMJ 2016;353:i3140. doi:10.1136/bmj.i3140
-
(2016)
BMJ
, vol.353
, pp. i3140
-
-
Riley, R.D.1
Ensor, J.2
Snell, K.I.3
-
49
-
-
84946072388
-
Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use
-
Debray TP, Riley RD, Rovers MM, Reitsma JB, Moons KG, Cochrane IPD Meta-analysis Methods group. Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med 2015;12:e1001886. doi:10.1371/journal. pmed.1001886
-
(2015)
PLoS Med
, vol.12
, pp. e1001886
-
-
Debray, T.P.1
Riley, R.D.2
Rovers, M.M.3
Reitsma, J.B.4
Moons, K.G.5
-
50
-
-
84952631019
-
Prediction models need appropriate internal, internal-external, and external validation
-
Steyerberg EW, Harrell FE Jr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol 2016;69:245-7. doi:10.1016/j.jclinepi.2015.04.005
-
(2016)
J Clin Epidemiol
, vol.69
, pp. 245-247
-
-
Steyerberg, E.W.1
Harrell, F.E.2
-
51
-
-
85081286713
-
Untapped potential of multicenter studies: A review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting
-
Wynants L, Kent DM, Timmerman D, Lundquist CM, Van Calster B. Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting. Diagn Progn Res 2019;3:6. doi:10.1186/s41512-019-0046-9
-
(2019)
Diagn Progn Res
, vol.3
, pp. 6
-
-
Wynants, L.1
Kent, D.M.2
Timmerman, D.3
Lundquist, C.M.4
Van Calster, B.5
-
52
-
-
85044435642
-
Random-efects meta-analysis of the clinical utility of tests and prediction models
-
Wynants L, Riley RD, Timmerman D, Van Calster B. Random-efects meta-analysis of the clinical utility of tests and prediction models. Stat Med 2018;37:2034-52. doi:10.1002/sim.7653
-
(2018)
Stat Med
, vol.37
, pp. 2034-2052
-
-
Wynants, L.1
Riley, R.D.2
Timmerman, D.3
Van Calster, B.4
-
53
-
-
85081901579
-
Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study
-
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62. doi:10.1016/S0140-6736(20)30566-3
-
(2020)
Lancet
, vol.395
, pp. 1054-1062
-
-
Zhou, F.1
Yu, T.2
Du, R.3
-
54
-
-
85082725539
-
The clinical and chest CT features associated with severe and critical covid-19 pneumonia
-
Li K, Wu J, Wu F, et al. The clinical and chest CT features associated with severe and critical covid-19 pneumonia. Invest Radiol 2020. doi:10.1097/RLI.0000000000000672
-
(2020)
Invest Radiol
-
-
Li, K.1
Wu, J.2
Wu, F.3
-
55
-
-
85081886739
-
Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China
-
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020. doi:10.1007/s00392-020-01626-9
-
(2020)
Clin Res Cardiol
-
-
Li, B.1
Yang, J.2
Zhao, F.3
-
57
-
-
85082005057
-
Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Electronic address: Https://www.lancovid.org. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis
-
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al, Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Electronic address: https://www. lancovid.org. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020:101623. doi:10.1016/j.tmaid.2020.101623
-
(2020)
Travel Med Infect Dis
, pp. 101623
-
-
Rodriguez-Morales, A.J.1
Cardona-Ospina, J.A.2
Gutiérrez-Ocampo, E.3
-
58
-
-
85082406821
-
Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis
-
Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 2020;506:145-8. doi:10.1016/j. cca.2020.03.022
-
(2020)
Clin Chim Acta
, vol.506
, pp. 145-148
-
-
Lippi, G.1
Plebani, M.2
Henry, B.M.3
-
60
-
-
85081041602
-
Open peer-review platform for COVID-19 preprints
-
Johansson MA, Saderi D. Open peer-review platform for COVID-19 preprints. Nature 2020;579:29. doi:10.1038/d41586-020-00613-4
-
(2020)
Nature
, vol.579
, pp. 29
-
-
Ma, J.1
Saderi, D.2
-
61
-
-
85080979717
-
Open access epidemiological data from the COVID-19 outbreak
-
Xu B, Kraemer MU, Gutierrez B, et al. Open access epidemiological data from the COVID-19 outbreak. Lancet Infect Dis 2020. doi:10.1016/s1473-3099(20)30119-5
-
(2020)
Lancet Infect Dis
-
-
Xu, B.1
Kraemer, M.U.2
Gutierrez, B.3
-
62
-
-
85083457856
-
-
Società Italiana di Radiologia Medica e Interventistica
-
Società Italiana di Radiologia Medica e Interventistica. COVID-19 database 2020. https://www.sirm.org/category/senza-categoria/covid-19/.
-
COVID-19 Database 2020
-
-
-
68
-
-
85083424687
-
-
Surgisphere Corporation
-
Surgisphere Corporation. COVID-19 response center 2020. https://surgisphere.com/covid-19-response-center/.
-
COVID-19 Response Center 2020
-
-
-
69
-
-
85083819099
-
Limited utility of SOFA and APACHE II prediction models for ICU triage in pandemic Influenza
-
Enfeld K, Miller R, Rice T, et al. Limited utility of SOFA and APACHE II prediction models for ICU triage in pandemic Influenza. Chest 2011;140:913A. doi:10.1378/chest.1118087
-
(2011)
Chest
, vol.140
, pp. 913A
-
-
Enfeld, K.1
Miller, R.2
Rice, T.3
-
70
-
-
84921383600
-
Calibration of risk prediction models: Impact on decision-analytic performance
-
Van Calster B, Vickers AJ. Calibration of risk prediction models: impact on decision-analytic performance. Med Decis Making 2015;35:162-9. doi:10.1177/0272989X14547233
-
(2015)
Med Decis Making
, vol.35
, pp. 162-169
-
-
Van Calster, B.1
Vickers, A.J.2
-
71
-
-
85049920258
-
Sample size for binary logistic prediction models: Beyond events per variable criteria
-
van Smeden M, Moons KG, de Groot JA, et al. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res 2019;28:2455-74. doi:10.1177/0962280218784726
-
(2019)
Stat Methods Med Res
, vol.28
, pp. 2455-2474
-
-
Van Smeden, M.1
Moons, K.G.2
De Groot, J.A.3
|