-
1
-
-
67650082402
-
Prognosis and prognostic research: Validating a prognostic model
-
Altman DG, Vergouwe Y, Royston P, et al: Prognosis and prognostic research: Validating a prognostic model. BMJ 2009; 338:b605
-
(2009)
BMJ
, vol.338
, pp. b605
-
-
Altman, D.G.1
Vergouwe, Y.2
Royston, P.3
-
2
-
-
67650089602
-
Prognosis and prognostic research: Application and impact of prognostic models in clinical practice
-
Moons KG, Altman DG, Vergouwe Y, et al: Prognosis and prognostic research: Application and impact of prognostic models in clinical practice. BMJ 2009; 338:b606
-
(2009)
BMJ
, vol.338
, pp. b606
-
-
Moons, K.G.1
Altman, D.G.2
Vergouwe, Y.3
-
3
-
-
67650022801
-
Prognosis and prognostic research: What, why, and how?
-
Moons KG, Royston P, Vergouwe Y, et al: Prognosis and prognostic research: What, why, and how? BMJ 2009; 338:b375
-
(2009)
BMJ
, vol.338
, pp. b375
-
-
Moons, K.G.1
Royston, P.2
Vergouwe, Y.3
-
4
-
-
67650045441
-
Prognosis and prognostic research: Developing a prognostic model
-
Royston P, Moons KG, Altman DG, et al: Prognosis and prognostic research: Developing a prognostic model. BMJ 2009; 338:b604
-
(2009)
BMJ
, vol.338
, pp. b604
-
-
Royston, P.1
Moons, K.G.2
Altman, D.G.3
-
6
-
-
84937549517
-
Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)
-
Collins GS, Reitsma JB, Altman DG, et al: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Ann Intern Med 2015; 162:735-736
-
(2015)
Ann Intern Med
, vol.162
, pp. 735-736
-
-
Collins, G.S.1
Reitsma, J.B.2
Altman, D.G.3
-
7
-
-
84937548548
-
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration
-
Moons KG, Altman DG, Reitsma JB, et al: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015; 162:W1-73
-
(2015)
Ann Intern Med
, vol.162
, pp. W1-W73
-
-
Moons, K.G.1
Altman, D.G.2
Reitsma, J.B.3
-
8
-
-
85056625269
-
Control of confounding and reporting of results in causal inference studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals
-
Lederer DJ, Bell SC, Branson RD, et al: Control of confounding and reporting of results in causal inference studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. Ann Am Thorac Soc 2019; 16:22-28
-
(2019)
Ann Am Thorac Soc
, vol.16
, pp. 22-28
-
-
Lederer, D.J.1
Bell, S.C.2
Branson, R.D.3
-
9
-
-
78751611452
-
To explain or to predict?
-
Shmueli G: To explain or to predict? Statist Sci 2010; 25:289-310
-
(2010)
Statist Sci
, vol.25
, pp. 289-310
-
-
Shmueli, G.1
-
10
-
-
33646592518
-
Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients
-
Zimmerman JE, Kramer AA, McNair DS, et al: Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients. Crit Care Med 2006; 34:1297-1310
-
(2006)
Crit Care Med
, vol.34
, pp. 1297-1310
-
-
Zimmerman, J.E.1
Kramer, A.A.2
McNair, D.S.3
-
11
-
-
85058735935
-
Machine learning, health disparities, and causal reasoning
-
Goodman SN, Goel S, Cullen MR: Machine learning, health disparities, and causal reasoning. Ann Intern Med 2018; 169:883-884
-
(2018)
Ann Intern Med
, vol.169
, pp. 883-884
-
-
Goodman, S.N.1
Goel, S.2
Cullen, M.R.3
-
12
-
-
84948949531
-
Race, ethnicity and lung function: A brief history
-
Braun L: Race, ethnicity and lung function: A brief history. Can J Respir Ther 2015; 51:99-101
-
(2015)
Can J Respir Ther
, vol.51
, pp. 99-101
-
-
Braun, L.1
-
13
-
-
85067055289
-
Reconsidering the consequences of using race to estimate kidney function
-
Eneanya ND, Yang W, Reese PP: Reconsidering the consequences of using race to estimate kidney function. JAMA 2019; 322:113-114
-
(2019)
JAMA
, vol.322
, pp. 113-114
-
-
Eneanya, N.D.1
Yang, W.2
Reese, P.P.3
-
14
-
-
85053019174
-
Potential biases in machine learning algorithms using electronic health record data
-
Gianfrancesco MA, Tamang S, Yazdany J, et al: Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 2018; 178:1544-1547
-
(2018)
JAMA Intern Med
, vol.178
, pp. 1544-1547
-
-
Ma, G.1
Tamang, S.2
Yazdany, J.3
-
15
-
-
85058771359
-
Ensuring fairness in machine learning to advance health equity
-
Rajkomar A, Hardt M, Howell MD, et al: Ensuring fairness in machine learning to advance health equity. Ann Intern Med 2018; 169:866-872
-
(2018)
Ann Intern Med
, vol.169
, pp. 866-872
-
-
Rajkomar, A.1
Hardt, M.2
Howell, M.D.3
-
16
-
-
0030221202
-
Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis
-
Sun GW, Shook TL, Kay GL: Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol 1996; 49:907-916
-
(1996)
J Clin Epidemiol
, vol.49
, pp. 907-916
-
-
Sun, G.W.1
Shook, T.L.2
Kay, G.L.3
-
17
-
-
85053235652
-
Step away from stepwise
-
Smith G: Step away from stepwise. J Big Data 2018; 5:32
-
(2018)
J Big Data
, vol.5
, pp. 32
-
-
Smith, G.1
-
18
-
-
1642380461
-
The problem of overftting
-
Hawkins DM: The problem of overftting. J Chem Inf Comput Sci 2004; 44:1-12
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1-12
-
-
Hawkins, D.M.1
-
19
-
-
58749113262
-
Stepwise model ftting and statistical inference: Turning noise into signal pollution
-
Mundry R, Nunn CL: Stepwise model ftting and statistical inference: Turning noise into signal pollution. Am Nat 2009; 173:119-123
-
(2009)
Am Nat
, vol.173
, pp. 119-123
-
-
Mundry, R.1
Nunn, C.L.2
-
20
-
-
73449083353
-
Variable selection: current practice in epidemi-ological studies
-
Walter S, Tiemeier H: Variable selection: current practice in epidemi-ological studies. Eur J Epidemiol 2009; 24:733-736
-
(2009)
Eur J Epidemiol
, vol.24
, pp. 733-736
-
-
Walter, S.1
Tiemeier, H.2
-
21
-
-
84976291730
-
The ASA's statement on p-Values: Context, process, and purpose
-
Wasserstein RL, Lazar NA: The ASA's statement on p-Values: Context, process, and purpose. Am Stat 2016; 70:129-133
-
(2016)
Am Stat
, vol.70
, pp. 129-133
-
-
Wasserstein, R.L.1
Lazar, N.A.2
-
22
-
-
0035530911
-
Application of shrinkage techniques in logistic regression analysis: A case study
-
Steyerberg EW, Eijkemans MJC, Habbema JDF: Application of shrinkage techniques in logistic regression analysis: A case study. Stat Neerl 2001; 55:76-88
-
(2001)
Stat Neerl
, vol.55
, pp. 76-88
-
-
Steyerberg, E.W.1
Eijkemans, M.J.C.2
Habbema, J.D.F.3
-
23
-
-
85055265422
-
Minimum sample size for developing a multivariable prediction model: Part I-Continuous outcomes
-
Riley RD, Snell KIE, Ensor J, et al: Minimum sample size for developing a multivariable prediction model: Part I-Continuous outcomes. Stat Med 2019; 38:1262-1275
-
(2019)
Stat Med
, vol.38
, pp. 1262-1275
-
-
Riley, R.D.1
Snell, K.I.E.2
Ensor, J.3
-
24
-
-
85059273231
-
PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration
-
Moons KGM, Wolff RF, Riley RD, et al: PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration. Ann Intern Med 2019; 170:W1-W33
-
(2019)
Ann Intern Med
, vol.170
, pp. W1-W33
-
-
Moons, K.G.M.1
Wolff, R.F.2
Riley, R.D.3
-
25
-
-
85055292302
-
Minimum sample size for developing a multivariable prediction model: PART II-Binary and time-to-event outcomes
-
Riley RD, Snell KI, Ensor J, et al: Minimum sample size for developing a multivariable prediction model: PART II-Binary and time-to-event outcomes. Stat Med 2019; 38:1276-1296
-
(2019)
Stat Med
, vol.38
, pp. 1276-1296
-
-
Riley, R.D.1
Snell, K.I.2
Ensor, J.3
-
26
-
-
85049920258
-
Sample size for binary logistic prediction models: Beyond events per variable criteria
-
van Smeden M, Moons KG, de Groot JA, et al: Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat Methods Med Res. 2019; 28:2455-2474
-
(2019)
Stat Methods Med Res
, vol.28
, pp. 2455-2474
-
-
Van Smeden, M.1
Moons, K.G.2
De Groot, J.A.3
-
27
-
-
85156210071
-
Dichotomania: An obsessive compulsive disorder that is badly affecting the quality of analysis of pharmaceutical trials
-
Senn S: Dichotomania: An obsessive compulsive disorder that is badly affecting the quality of analysis of pharmaceutical trials. In: Proceedings of the International Statistical Institute, 55th Session, 2005, Sydney, Australia, April 6-12, 2005
-
Proceedings of the International Statistical Institute, 55th Session, 2005, Sydney, Australia, April 6-12, 2005
-
-
Senn, S.1
-
28
-
-
31344435149
-
Dichotomizing continuous predictors in multiple regression: A bad idea
-
Royston P, Altman DG, Sauerbrei W: Dichotomizing continuous predictors in multiple regression: A bad idea. Stat Med 2006; 25:127-141
-
(2006)
Stat Med
, vol.25
, pp. 127-141
-
-
Royston, P.1
Altman, D.G.2
Sauerbrei, W.3
-
29
-
-
85097194114
-
A new insight into missing data in intensive care unit patient profles: Observational study
-
Sharafoddini A, Dubin JA, Maslove DM, et al: A new insight into missing data in intensive care unit patient profles: Observational study. JMIR Med Inform 2019; 7:e11605
-
(2019)
JMIR Med Inform
, vol.7
, pp. e11605
-
-
Sharafoddini, A.1
Dubin, J.A.2
Maslove, D.M.3
-
31
-
-
34250614356
-
Advanced statistics: Missing data in clinical research-Part 2: Multiple imputation
-
Newgard CD, Haukoos JS: Advanced statistics: Missing data in clinical research-Part 2: Multiple imputation. Acad Emerg Med 2007; 14:669-678
-
(2007)
Acad Emerg Med
, vol.14
, pp. 669-678
-
-
Newgard, C.D.1
Haukoos, J.S.2
-
32
-
-
0034728356
-
What do we mean by validating a prognostic model?
-
Altman DG, Royston P: What do we mean by validating a prognostic model? Stat Med 2000; 19:453-473
-
(2000)
Stat Med
, vol.19
, pp. 453-473
-
-
Altman, D.G.1
Royston, P.2
-
33
-
-
84905656517
-
Towards better clinical prediction models: Seven steps for development and an ABCD for validation
-
Steyerberg EW, Vergouwe Y: Towards better clinical prediction models: Seven steps for development and an ABCD for validation. Eur Heart J 2014; 35:1925-1931
-
(2014)
Eur Heart J
, vol.35
, pp. 1925-1931
-
-
Steyerberg, E.W.1
Vergouwe, Y.2
-
34
-
-
84973349401
-
A new concordance measure for risk prediction models in external validation settings
-
van Klaveren D, Gönen M, Steyerberg EW, et al: A new concordance measure for risk prediction models in external validation settings. Stat Med 2016; 35:4136-4152
-
(2016)
Stat Med
, vol.35
, pp. 4136-4152
-
-
Van Klaveren, D.1
Gönen, M.2
Steyerberg, E.W.3
-
35
-
-
84923527988
-
A new framework to enhance the interpretation of external validation studies of clinical prediction models
-
Debray TP, Vergouwe Y, Koffjberg H, et al: A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol 2015; 68:279-289
-
(2015)
J Clin Epidemiol
, vol.68
, pp. 279-289
-
-
Debray, T.P.1
Vergouwe, Y.2
Koffjberg, H.3
-
36
-
-
77958090625
-
External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coeffcients
-
Vergouwe Y, Moons KG, Steyerberg EW: External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coeffcients. Am J Epidemiol 2010; 172:971-980
-
(2010)
Am J Epidemiol
, vol.172
, pp. 971-980
-
-
Vergouwe, Y.1
Moons, K.G.2
Steyerberg, E.W.3
-
37
-
-
0034906866
-
Internal validation of predictive models: Effciency of some procedures for logistic regression analysis
-
Steyerberg EW, Harrell FE Jr, Borsboom GJ, et al: Internal validation of predictive models: Effciency of some procedures for logistic regression analysis. J Clin Epidemiol 2001; 54:774-781
-
(2001)
J Clin Epidemiol
, vol.54
, pp. 774-781
-
-
Steyerberg, E.W.1
Harrell, F.E.2
Borsboom, G.J.3
-
38
-
-
85001085996
-
Customization of a severity of illness score using local electronic medical record data
-
Lee J, Maslove DM: Customization of a severity of illness score using local electronic medical record data. J Intensive Care Med 2017; 32:38-47
-
(2017)
J Intensive Care Med
, vol.32
, pp. 38-47
-
-
Lee, J.1
Maslove, D.M.2
-
39
-
-
73849094087
-
Assessing the performance of prediction models: A framework for traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR, et al: Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010; 21:128-138
-
(2010)
Epidemiology
, vol.21
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
-
40
-
-
85031322889
-
Discrimination and calibration of clinical prediction models: Users' guides to the medical literature
-
Alba AC, Agoritsas T, Walsh M, et al: Discrimination and calibration of clinical prediction models: Users' guides to the medical literature. JAMA 2017; 318:1377-1384
-
(2017)
JAMA
, vol.318
, pp. 1377-1384
-
-
Alba, A.C.1
Agoritsas, T.2
Walsh, M.3
-
41
-
-
85047757862
-
Rare events in the ICU: An emerging challenge in clas-sifcation and prediction
-
Leisman DE: Rare events in the ICU: An emerging challenge in clas-sifcation and prediction. Crit Care Med 2018; 46:418-424
-
(2018)
Crit Care Med
, vol.46
, pp. 418-424
-
-
De, L.1
|