메뉴 건너뛰기




Volumn 48, Issue 5, 2020, Pages 623-633

Development and Reporting of Prediction Models: Guidance for Authors From Editors of Respiratory, Sleep, and Critical Care Journals

(39)  Leisman, Daniel E a   Harhay, Michael O b   Lederer, David J c,d   Abramson, Michael e   Adjei, Alex A f   Bakker, Jan g   Ballas, Zuhair K h   Barreiro, Esther i   Bell, Scott C j   Bellomo, Rinaldo k   Bernstein, Jonathan A l   Branson, Richard D m   Brusasco, Vito n   Chalmers, James D o   Chokroverty, Sudhansu p   Citerio, Giuseppe q   Collop, Nancy A r   Cooke, Colin R s   Crapo, James D t   Donaldson, Gavin u   more..


Author keywords

critical care; prediction models; pulmonary medicine; sleep medicine

Indexed keywords

ARTICLE; EDITOR; HUMAN; INTENSIVE CARE; MEASUREMENT ERROR; PRACTICE GUIDELINE; PREDICTION; PREDICTOR VARIABLE; PROGNOSIS; PULMONOLOGY; RISK FACTOR; SLEEP MEDICINE; DECISION SUPPORT SYSTEM; ORGANIZATION AND MANAGEMENT; PUBLICATION; REPRODUCIBILITY; RESPIRATORY TRACT DISEASE; SLEEP DISORDER; STATISTICAL BIAS; STATISTICAL MODEL;

EID: 85083903238     PISSN: 00903493     EISSN: 15300293     Source Type: Journal    
DOI: 10.1097/CCM.0000000000004246     Document Type: Article
Times cited : (179)

References (41)
  • 1
    • 67650082402 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Validating a prognostic model
    • Altman DG, Vergouwe Y, Royston P, et al: Prognosis and prognostic research: Validating a prognostic model. BMJ 2009; 338:b605
    • (2009) BMJ , vol.338 , pp. b605
    • Altman, D.G.1    Vergouwe, Y.2    Royston, P.3
  • 2
    • 67650089602 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Application and impact of prognostic models in clinical practice
    • Moons KG, Altman DG, Vergouwe Y, et al: Prognosis and prognostic research: Application and impact of prognostic models in clinical practice. BMJ 2009; 338:b606
    • (2009) BMJ , vol.338 , pp. b606
    • Moons, K.G.1    Altman, D.G.2    Vergouwe, Y.3
  • 3
    • 67650022801 scopus 로고    scopus 로고
    • Prognosis and prognostic research: What, why, and how?
    • Moons KG, Royston P, Vergouwe Y, et al: Prognosis and prognostic research: What, why, and how? BMJ 2009; 338:b375
    • (2009) BMJ , vol.338 , pp. b375
    • Moons, K.G.1    Royston, P.2    Vergouwe, Y.3
  • 4
    • 67650045441 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Developing a prognostic model
    • Royston P, Moons KG, Altman DG, et al: Prognosis and prognostic research: Developing a prognostic model. BMJ 2009; 338:b604
    • (2009) BMJ , vol.338 , pp. b604
    • Royston, P.1    Moons, K.G.2    Altman, D.G.3
  • 6
    • 84937549517 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)
    • Collins GS, Reitsma JB, Altman DG, et al: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Ann Intern Med 2015; 162:735-736
    • (2015) Ann Intern Med , vol.162 , pp. 735-736
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3
  • 7
    • 84937548548 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration
    • Moons KG, Altman DG, Reitsma JB, et al: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015; 162:W1-73
    • (2015) Ann Intern Med , vol.162 , pp. W1-W73
    • Moons, K.G.1    Altman, D.G.2    Reitsma, J.B.3
  • 8
    • 85056625269 scopus 로고    scopus 로고
    • Control of confounding and reporting of results in causal inference studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals
    • Lederer DJ, Bell SC, Branson RD, et al: Control of confounding and reporting of results in causal inference studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. Ann Am Thorac Soc 2019; 16:22-28
    • (2019) Ann Am Thorac Soc , vol.16 , pp. 22-28
    • Lederer, D.J.1    Bell, S.C.2    Branson, R.D.3
  • 9
    • 78751611452 scopus 로고    scopus 로고
    • To explain or to predict?
    • Shmueli G: To explain or to predict? Statist Sci 2010; 25:289-310
    • (2010) Statist Sci , vol.25 , pp. 289-310
    • Shmueli, G.1
  • 10
    • 33646592518 scopus 로고    scopus 로고
    • Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients
    • Zimmerman JE, Kramer AA, McNair DS, et al: Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients. Crit Care Med 2006; 34:1297-1310
    • (2006) Crit Care Med , vol.34 , pp. 1297-1310
    • Zimmerman, J.E.1    Kramer, A.A.2    McNair, D.S.3
  • 11
    • 85058735935 scopus 로고    scopus 로고
    • Machine learning, health disparities, and causal reasoning
    • Goodman SN, Goel S, Cullen MR: Machine learning, health disparities, and causal reasoning. Ann Intern Med 2018; 169:883-884
    • (2018) Ann Intern Med , vol.169 , pp. 883-884
    • Goodman, S.N.1    Goel, S.2    Cullen, M.R.3
  • 12
    • 84948949531 scopus 로고    scopus 로고
    • Race, ethnicity and lung function: A brief history
    • Braun L: Race, ethnicity and lung function: A brief history. Can J Respir Ther 2015; 51:99-101
    • (2015) Can J Respir Ther , vol.51 , pp. 99-101
    • Braun, L.1
  • 13
    • 85067055289 scopus 로고    scopus 로고
    • Reconsidering the consequences of using race to estimate kidney function
    • Eneanya ND, Yang W, Reese PP: Reconsidering the consequences of using race to estimate kidney function. JAMA 2019; 322:113-114
    • (2019) JAMA , vol.322 , pp. 113-114
    • Eneanya, N.D.1    Yang, W.2    Reese, P.P.3
  • 14
    • 85053019174 scopus 로고    scopus 로고
    • Potential biases in machine learning algorithms using electronic health record data
    • Gianfrancesco MA, Tamang S, Yazdany J, et al: Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 2018; 178:1544-1547
    • (2018) JAMA Intern Med , vol.178 , pp. 1544-1547
    • Ma, G.1    Tamang, S.2    Yazdany, J.3
  • 15
    • 85058771359 scopus 로고    scopus 로고
    • Ensuring fairness in machine learning to advance health equity
    • Rajkomar A, Hardt M, Howell MD, et al: Ensuring fairness in machine learning to advance health equity. Ann Intern Med 2018; 169:866-872
    • (2018) Ann Intern Med , vol.169 , pp. 866-872
    • Rajkomar, A.1    Hardt, M.2    Howell, M.D.3
  • 16
    • 0030221202 scopus 로고    scopus 로고
    • Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis
    • Sun GW, Shook TL, Kay GL: Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol 1996; 49:907-916
    • (1996) J Clin Epidemiol , vol.49 , pp. 907-916
    • Sun, G.W.1    Shook, T.L.2    Kay, G.L.3
  • 17
    • 85053235652 scopus 로고    scopus 로고
    • Step away from stepwise
    • Smith G: Step away from stepwise. J Big Data 2018; 5:32
    • (2018) J Big Data , vol.5 , pp. 32
    • Smith, G.1
  • 18
  • 19
    • 58749113262 scopus 로고    scopus 로고
    • Stepwise model ftting and statistical inference: Turning noise into signal pollution
    • Mundry R, Nunn CL: Stepwise model ftting and statistical inference: Turning noise into signal pollution. Am Nat 2009; 173:119-123
    • (2009) Am Nat , vol.173 , pp. 119-123
    • Mundry, R.1    Nunn, C.L.2
  • 20
    • 73449083353 scopus 로고    scopus 로고
    • Variable selection: current practice in epidemi-ological studies
    • Walter S, Tiemeier H: Variable selection: current practice in epidemi-ological studies. Eur J Epidemiol 2009; 24:733-736
    • (2009) Eur J Epidemiol , vol.24 , pp. 733-736
    • Walter, S.1    Tiemeier, H.2
  • 21
    • 84976291730 scopus 로고    scopus 로고
    • The ASA's statement on p-Values: Context, process, and purpose
    • Wasserstein RL, Lazar NA: The ASA's statement on p-Values: Context, process, and purpose. Am Stat 2016; 70:129-133
    • (2016) Am Stat , vol.70 , pp. 129-133
    • Wasserstein, R.L.1    Lazar, N.A.2
  • 22
    • 0035530911 scopus 로고    scopus 로고
    • Application of shrinkage techniques in logistic regression analysis: A case study
    • Steyerberg EW, Eijkemans MJC, Habbema JDF: Application of shrinkage techniques in logistic regression analysis: A case study. Stat Neerl 2001; 55:76-88
    • (2001) Stat Neerl , vol.55 , pp. 76-88
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Habbema, J.D.F.3
  • 23
    • 85055265422 scopus 로고    scopus 로고
    • Minimum sample size for developing a multivariable prediction model: Part I-Continuous outcomes
    • Riley RD, Snell KIE, Ensor J, et al: Minimum sample size for developing a multivariable prediction model: Part I-Continuous outcomes. Stat Med 2019; 38:1262-1275
    • (2019) Stat Med , vol.38 , pp. 1262-1275
    • Riley, R.D.1    Snell, K.I.E.2    Ensor, J.3
  • 24
    • 85059273231 scopus 로고    scopus 로고
    • PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration
    • Moons KGM, Wolff RF, Riley RD, et al: PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration. Ann Intern Med 2019; 170:W1-W33
    • (2019) Ann Intern Med , vol.170 , pp. W1-W33
    • Moons, K.G.M.1    Wolff, R.F.2    Riley, R.D.3
  • 25
    • 85055292302 scopus 로고    scopus 로고
    • Minimum sample size for developing a multivariable prediction model: PART II-Binary and time-to-event outcomes
    • Riley RD, Snell KI, Ensor J, et al: Minimum sample size for developing a multivariable prediction model: PART II-Binary and time-to-event outcomes. Stat Med 2019; 38:1276-1296
    • (2019) Stat Med , vol.38 , pp. 1276-1296
    • Riley, R.D.1    Snell, K.I.2    Ensor, J.3
  • 26
    • 85049920258 scopus 로고    scopus 로고
    • Sample size for binary logistic prediction models: Beyond events per variable criteria
    • van Smeden M, Moons KG, de Groot JA, et al: Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat Methods Med Res. 2019; 28:2455-2474
    • (2019) Stat Methods Med Res , vol.28 , pp. 2455-2474
    • Van Smeden, M.1    Moons, K.G.2    De Groot, J.A.3
  • 28
    • 31344435149 scopus 로고    scopus 로고
    • Dichotomizing continuous predictors in multiple regression: A bad idea
    • Royston P, Altman DG, Sauerbrei W: Dichotomizing continuous predictors in multiple regression: A bad idea. Stat Med 2006; 25:127-141
    • (2006) Stat Med , vol.25 , pp. 127-141
    • Royston, P.1    Altman, D.G.2    Sauerbrei, W.3
  • 29
    • 85097194114 scopus 로고    scopus 로고
    • A new insight into missing data in intensive care unit patient profles: Observational study
    • Sharafoddini A, Dubin JA, Maslove DM, et al: A new insight into missing data in intensive care unit patient profles: Observational study. JMIR Med Inform 2019; 7:e11605
    • (2019) JMIR Med Inform , vol.7 , pp. e11605
    • Sharafoddini, A.1    Dubin, J.A.2    Maslove, D.M.3
  • 31
    • 34250614356 scopus 로고    scopus 로고
    • Advanced statistics: Missing data in clinical research-Part 2: Multiple imputation
    • Newgard CD, Haukoos JS: Advanced statistics: Missing data in clinical research-Part 2: Multiple imputation. Acad Emerg Med 2007; 14:669-678
    • (2007) Acad Emerg Med , vol.14 , pp. 669-678
    • Newgard, C.D.1    Haukoos, J.S.2
  • 32
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman DG, Royston P: What do we mean by validating a prognostic model? Stat Med 2000; 19:453-473
    • (2000) Stat Med , vol.19 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 33
    • 84905656517 scopus 로고    scopus 로고
    • Towards better clinical prediction models: Seven steps for development and an ABCD for validation
    • Steyerberg EW, Vergouwe Y: Towards better clinical prediction models: Seven steps for development and an ABCD for validation. Eur Heart J 2014; 35:1925-1931
    • (2014) Eur Heart J , vol.35 , pp. 1925-1931
    • Steyerberg, E.W.1    Vergouwe, Y.2
  • 34
    • 84973349401 scopus 로고    scopus 로고
    • A new concordance measure for risk prediction models in external validation settings
    • van Klaveren D, Gönen M, Steyerberg EW, et al: A new concordance measure for risk prediction models in external validation settings. Stat Med 2016; 35:4136-4152
    • (2016) Stat Med , vol.35 , pp. 4136-4152
    • Van Klaveren, D.1    Gönen, M.2    Steyerberg, E.W.3
  • 35
    • 84923527988 scopus 로고    scopus 로고
    • A new framework to enhance the interpretation of external validation studies of clinical prediction models
    • Debray TP, Vergouwe Y, Koffjberg H, et al: A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol 2015; 68:279-289
    • (2015) J Clin Epidemiol , vol.68 , pp. 279-289
    • Debray, T.P.1    Vergouwe, Y.2    Koffjberg, H.3
  • 36
    • 77958090625 scopus 로고    scopus 로고
    • External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coeffcients
    • Vergouwe Y, Moons KG, Steyerberg EW: External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coeffcients. Am J Epidemiol 2010; 172:971-980
    • (2010) Am J Epidemiol , vol.172 , pp. 971-980
    • Vergouwe, Y.1    Moons, K.G.2    Steyerberg, E.W.3
  • 37
    • 0034906866 scopus 로고    scopus 로고
    • Internal validation of predictive models: Effciency of some procedures for logistic regression analysis
    • Steyerberg EW, Harrell FE Jr, Borsboom GJ, et al: Internal validation of predictive models: Effciency of some procedures for logistic regression analysis. J Clin Epidemiol 2001; 54:774-781
    • (2001) J Clin Epidemiol , vol.54 , pp. 774-781
    • Steyerberg, E.W.1    Harrell, F.E.2    Borsboom, G.J.3
  • 38
    • 85001085996 scopus 로고    scopus 로고
    • Customization of a severity of illness score using local electronic medical record data
    • Lee J, Maslove DM: Customization of a severity of illness score using local electronic medical record data. J Intensive Care Med 2017; 32:38-47
    • (2017) J Intensive Care Med , vol.32 , pp. 38-47
    • Lee, J.1    Maslove, D.M.2
  • 39
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: A framework for traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR, et al: Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010; 21:128-138
    • (2010) Epidemiology , vol.21 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 40
    • 85031322889 scopus 로고    scopus 로고
    • Discrimination and calibration of clinical prediction models: Users' guides to the medical literature
    • Alba AC, Agoritsas T, Walsh M, et al: Discrimination and calibration of clinical prediction models: Users' guides to the medical literature. JAMA 2017; 318:1377-1384
    • (2017) JAMA , vol.318 , pp. 1377-1384
    • Alba, A.C.1    Agoritsas, T.2    Walsh, M.3
  • 41
    • 85047757862 scopus 로고    scopus 로고
    • Rare events in the ICU: An emerging challenge in clas-sifcation and prediction
    • Leisman DE: Rare events in the ICU: An emerging challenge in clas-sifcation and prediction. Crit Care Med 2018; 46:418-424
    • (2018) Crit Care Med , vol.46 , pp. 418-424
    • De, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.