메뉴 건너뛰기




Volumn 2, Issue 6, 2020, Pages e279-e281

Clinical applications of continual learning machine learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLINICAL DECISION MAKING; CLINICAL OUTCOME; CONTINUAL LEARNING; DEEP LEARNING; HEALTH CARE QUALITY; HUMAN; LIFELONG LEARNING; MACHINE LEARNING; NOTE; PREDICTION; AUTOMATED PATTERN RECOGNITION; HEALTH CARE DELIVERY; INFORMATION PROCESSING; PROCEDURES;

EID: 85085292202     PISSN: None     EISSN: 25897500     Source Type: Journal    
DOI: 10.1016/S2589-7500(20)30102-3     Document Type: Note
Times cited : (174)

References (10)
  • 1
  • 2
    • 85038908185 scopus 로고    scopus 로고
    • The use of machine learning algorithms in recommender systems: a systematic review
    • Portugal, I, Alencar, P, Cowan, D, The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst Appl 97 (2018), 205–227.
    • (2018) Expert Syst Appl , vol.97 , pp. 205-227
    • Portugal, I.1    Alencar, P.2    Cowan, D.3
  • 4
    • 0029340352 scopus 로고
    • Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
    • McClelland, JL, McNaughton, BL, O'Reilly, RC, Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102 (1995), 419–457.
    • (1995) Psychol Rev , vol.102 , pp. 419-457
    • McClelland, J.L.1    McNaughton, B.L.2    O'Reilly, R.C.3
  • 5
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: the sequential learning problem
    • McCloskey, M, Cohen, NJ, Catastrophic interference in connectionist networks: the sequential learning problem. Psychol Learn Motiv 24 (1989), 109–165.
    • (1989) Psychol Learn Motiv , vol.24 , pp. 109-165
    • McCloskey, M.1    Cohen, N.J.2
  • 6
    • 85027881492 scopus 로고    scopus 로고
    • Deep learning is effective for the classification of OCT images of normal versus age-related macular degeneration
    • Lee, CS, Baughman, DM, Lee, AY, Deep learning is effective for the classification of OCT images of normal versus age-related macular degeneration. Ophthalmol Retina 1 (2017), 322–327.
    • (2017) Ophthalmol Retina , vol.1 , pp. 322-327
    • Lee, C.S.1    Baughman, D.M.2    Lee, A.Y.3
  • 7
    • 85052522615 scopus 로고    scopus 로고
    • Clinically applicable deep learning for diagnosis and referral in retinal disease
    • De Fauw, J, Ledsam, JR, Romera-Paredes, B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 24 (2018), 1342–1350.
    • (2018) Nat Med , vol.24 , pp. 1342-1350
    • De Fauw, J.1    Ledsam, J.R.2    Romera-Paredes, B.3
  • 8
    • 85095168170 scopus 로고    scopus 로고
    • Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
    • Abràmoff, MD, Lavin, PT, Birch, M, Shah, N, Folk, JC, Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med, 1, 2018, 39.
    • (2018) NPJ Digit Med , vol.1 , pp. 39
    • Abràmoff, M.D.1    Lavin, P.T.2    Birch, M.3    Shah, N.4    Folk, J.C.5
  • 9
    • 85085329987 scopus 로고    scopus 로고
    • Personalized medication dosing using volatile data streams
    • (Accessed 30 April 2020)
    • Ghassemi, MM, AlHanai, T, Westover, MB, Mark, RG, Nemati, S, Personalized medication dosing using volatile data streams. https://www.aaai.org/ocs/index.php/WS/AAAIW18/paper/viewPaper/17234, June 20, 2018. (Accessed 30 April 2020)
    • (2018)
    • Ghassemi, M.M.1    AlHanai, T.2    Westover, M.B.3    Mark, R.G.4    Nemati, S.5
  • 10
    • 85070473224 scopus 로고    scopus 로고
    • Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD): discussion paper and request for feedback
    • (Accessed 30 April 2020)
    • US Food and Drug Administration. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD): discussion paper and request for feedback. https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf, January, 2019. (Accessed 30 April 2020)
    • (2019)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.