-
2
-
-
85059811921
-
High-performance medicine: The convergence of human and artificial intelligence
-
Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med 2019;25:44-56. 10. 1038/s41591-018-0300-7 30617339
-
(2019)
Nat Med
, vol.25
, pp. 44-56
-
-
Topol, E.J.1
-
4
-
-
84930630277
-
Deep learning
-
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44. 10. 1038/nature14539 26017442
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
5
-
-
85059762330
-
A guide to deep learning in healthcare
-
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019;25:24-9. 10. 1038/s41591-018-0316-z 30617335
-
(2019)
Nat Med
, vol.25
, pp. 24-29
-
-
Esteva, A.1
Robicquet, A.2
Ramsundar, B.3
-
6
-
-
85082620549
-
-
NCBI
-
NCBI. PubMed search for deep learning. 2019. https://www. ncbi. nlm. nih. gov/pubmed/ term=deep+learning+or+%22Deep+Learning%22%5BMesh%5D.
-
(2019)
PubMed Search for Deep Learning
-
-
-
9
-
-
85057529871
-
Evaluating the impact of prediction models: Lessons learned, challenges, and recommendations
-
Kappen TH, van Klei WA, van Wolfswinkel L, Kalkman CJ, Vergouwe Y, Moons KGM. Evaluating the impact of prediction models: lessons learned, challenges, and recommendations. Diagn Progn Res 2018;2:11. 10. 1186/s41512-018-0033-6 31093561
-
(2018)
Diagn Progn Res
, vol.2
, pp. 11
-
-
Kappen, T.H.1
Van Klei, W.A.2
Van Wolfswinkel, L.3
Kalkman, C.J.4
Vergouwe, Y.5
Moons, K.G.M.6
-
10
-
-
14944368720
-
COX-2 inhibitors-lessons in drug safety
-
Psaty BM, Furberg CD. COX-2 inhibitors-lessons in drug safety. N Engl J Med 2005;352:1133-5. 10. 1056/NEJMe058042 15713946
-
(2005)
N Engl J Med
, vol.352
, pp. 1133-1135
-
-
Psaty, B.M.1
Furberg, C.D.2
-
11
-
-
77950189829
-
CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials
-
Moher DCONSORT Group
-
Schulz KF, Altman DG, Moher DCONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 2010;340:c332. 10. 1136/bmj. c332 20332509
-
(2010)
BMJ
, vol.340
, pp. c332
-
-
Schulz, K.F.1
Altman, D.G.2
-
12
-
-
80053965962
-
International Diagnostic and Prognosis Prediction (IDAPP) group. Framework for the impact analysis and implementation of Clinical Prediction Rules (CPRs)
-
Wallace E, Smith SM, Perera-Salazar R, et al. International Diagnostic and Prognosis Prediction (IDAPP) group. Framework for the impact analysis and implementation of Clinical Prediction Rules (CPRs). BMC Med Inform Decis Mak 2011;11:62. 10. 1186/1472-6947-11-62 21999201
-
(2011)
BMC Med Inform Decis Mak
, vol.11
, pp. 62
-
-
Wallace, E.1
Smith, S.M.2
Perera-Salazar, R.3
-
13
-
-
69449100622
-
Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement
-
Altman DGPRISMA Group
-
Moher D, Liberati A, Tetzlaff J, Altman DGPRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009;339:b2535. 10. 1136/bmj. b2535 19622551
-
(2009)
BMJ
, vol.339
, pp. b2535
-
-
Moher, D.1
Liberati, A.2
Tetzlaff, J.3
-
14
-
-
84921328517
-
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement
-
Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ 2015;350:g7594. 10. 1136/bmj. g7594 25569120
-
(2015)
BMJ
, vol.350
, pp. g7594
-
-
Collins, G.S.1
Reitsma, J.B.2
Altman, D.G.3
Moons, K.G.4
-
15
-
-
84920623458
-
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration
-
Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73. 10. 7326/M14-0698 25560730
-
(2015)
Ann Intern Med
, vol.162
, pp. W1-W73
-
-
Moons, K.G.1
Altman, D.G.2
Reitsma, J.B.3
-
16
-
-
85065258314
-
Uniformity in measuring adherence to reporting guidelines: The example of TRIPOD for assessing completeness of reporting of prediction model studies
-
Heus P, Damen JAAG, Pajouheshnia R, et al. Uniformity in measuring adherence to reporting guidelines: The example of TRIPOD for assessing completeness of reporting of prediction model studies. BMJ Open 2019;9:e025611. 10. 1136/bmjopen-2018-025611 31023756
-
(2019)
BMJ Open
, vol.9
, pp. e025611
-
-
Heus, P.1
Damen, J.A.A.G.2
Pajouheshnia, R.3
-
17
-
-
85059267182
-
PROBAST: A tool to assess the risk of bias and applicability of prediction model studies
-
PROBAST Group
-
Wolff RF, Moons KGM, Riley RD, et al. PROBAST Group. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 2019;170:51-8. 10. 7326/M18-1376 30596875
-
(2019)
Ann Intern Med
, vol.170
, pp. 51-58
-
-
Wolff, R.F.1
Moons, K.G.M.2
Riley, R.D.3
-
18
-
-
85059273231
-
PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration
-
Moons KGM, Wolff RF, Riley RD, et al. PROBAST: A tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med 2019;170:W1-33. 10. 7326/M18-1377 30596876
-
(2019)
Ann Intern Med
, vol.170
, pp. W1-W33
-
-
Moons, K.G.M.1
Wolff, R.F.2
Riley, R.D.3
-
19
-
-
84859001212
-
Cochrane Bias Methods GroupCochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials
-
Higgins JP, Altman DG, Gøtzsche PC, et al. Cochrane Bias Methods GroupCochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928. 10. 1136/bmj. d5928 22008217
-
(2011)
BMJ
, vol.343
, pp. d5928
-
-
Higgins, J.P.1
Altman, D.G.2
Gøtzsche, P.C.3
-
20
-
-
85064564843
-
Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: A multicentre randomized controlled trial
-
Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: A multicentre randomized controlled trial. EClinicalMedicine 2019;9:52-9. 10. 1016/j. eclinm. 2019. 03. 001 31143882
-
(2019)
EClinicalMedicine
, vol.9
, pp. 52-59
-
-
Lin, H.1
Li, R.2
Liu, Z.3
-
21
-
-
85062259477
-
Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study
-
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study. Gut 2019;68:1813-9. 10. 1136/gutjnl-2018-317500 30814121
-
(2019)
Gut
, vol.68
, pp. 1813-1819
-
-
Wang, P.1
Berzin, T.M.2
Glissen Brown, J.R.3
-
22
-
-
85040794196
-
Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network
-
Han SS, Park GH, Lim W, et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS One 2018;13:e0191493. 10. 1371/journal. pone. 0191493 29352285
-
(2018)
PLoS One
, vol.13
, pp. e0191493
-
-
Han, S.S.1
Park, G.H.2
Lim, W.3
-
23
-
-
84892575232
-
Reducing waste from incomplete or unusable reports of biomedical research
-
Glasziou P, Altman DG, Bossuyt P, et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet 2014;383:267-76. 10. 1016/S0140-6736(13)62228-X 24411647
-
(2014)
Lancet
, vol.383
, pp. 267-276
-
-
Glasziou, P.1
Altman, D.G.2
Bossuyt, P.3
-
24
-
-
84892370875
-
Increasing value and reducing waste in research design, conduct, and analysis
-
Ioannidis JP, Greenland S, Hlatky MA, et al. Increasing value and reducing waste in research design, conduct, and analysis. Lancet 2014;383:166-75. 10. 1016/S0140-6736(13)62227-8 24411645
-
(2014)
Lancet
, vol.383
, pp. 166-175
-
-
Ioannidis, J.P.1
Greenland, S.2
Hlatky, M.A.3
-
26
-
-
0030268577
-
Surrogate end points in clinical trials: Are we being misled
-
Fleming TR, DeMets DL. Surrogate end points in clinical trials: Are we being misledAnn Intern Med 1996;125:605-13. 10. 7326/0003-4819-125-7-199610010-00011 8815760
-
(1996)
Ann Intern Med
, vol.125
, pp. 605-613
-
-
Fleming, T.R.1
DeMets, D.L.2
-
29
-
-
85052962253
-
Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015
-
Camerer CF, Dreber A, Holzmeister F, et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat Hum Behav 2018;2:637-44. 10. 1038/s41562-018-0399-z 31346273
-
(2018)
Nat Hum Behav
, vol.2
, pp. 637-644
-
-
Camerer, C.F.1
Dreber, A.2
Holzmeister, F.3
-
30
-
-
84907014634
-
Reanalyses of randomized clinical trial data
-
Ebrahim S, Sohani ZN, Montoya L, et al. Reanalyses of randomized clinical trial data. JAMA 2014;312:1024-32. 10. 1001/jama. 2014. 9646 25203082
-
(2014)
JAMA
, vol.312
, pp. 1024-1032
-
-
Ebrahim, S.1
Sohani, Z.N.2
Montoya, L.3
-
31
-
-
85056803821
-
Reproducible research practices, transparency, and open access data in the biomedical literature, 2015-2017
-
Wallach JD, Boyack KW, Ioannidis JPA. Reproducible research practices, transparency, and open access data in the biomedical literature, 2015-2017. PLoS Biol 2018;16:e2006930. 10. 1371/journal. pbio. 2006930 30457984
-
(2018)
PLoS Biol
, vol.16
, pp. e2006930
-
-
Wallach, J.D.1
Boyack, K.W.2
Ioannidis, J.P.A.3
-
32
-
-
85065133423
-
Artificial Intelligence Algorithms for Medical Prediction Should Be Nonproprietary and Readily Available
-
Van Calster B, Steyerberg EW, Collins GS. Artificial Intelligence Algorithms for Medical Prediction Should Be Nonproprietary and Readily Available. JAMA Intern Med 2019;179:731. 10. 1001/jamainternmed. 2019. 0597 31058938
-
(2019)
JAMA Intern Med
, vol.179
, pp. 731
-
-
Van Calster, B.1
Steyerberg, E.W.2
Collins, G.S.3
-
33
-
-
85059510761
-
Artificial intelligence-based decision-making for age-related macular degeneration
-
Hwang D-K, Hsu C-C, Chang K-J, et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics 2019;9:232-45. 10. 7150/thno. 28447 30662564
-
(2019)
Theranostics
, vol.9
, pp. 232-245
-
-
Hwang, D.-K.1
Hsu, C.-C.2
Chang, K.-J.3
-
34
-
-
85006357095
-
Exaggerations and caveats in press releases and health-related science news
-
Sumner P, Vivian-Griffiths S, Boivin J, et al. Exaggerations and caveats in press releases and health-related science news. PLoS One 2016;11:e0168217. 10. 1371/journal. pone. 0168217 27978540
-
(2016)
PLoS One
, vol.11
, pp. e0168217
-
-
Sumner, P.1
Vivian-Griffiths, S.2
Boivin, J.3
-
35
-
-
85066873500
-
Three randomized controlled trials evaluating the impact of "spin" in health news stories reporting studies of pharmacologic treatments on patients'/caregivers' interpretation of treatment benefit [correction in: BMC Med 2019 17 147]
-
Boutron I, Haneef R, Yavchitz A, et al. Three randomized controlled trials evaluating the impact of "spin" in health news stories reporting studies of pharmacologic treatments on patients'/caregivers' interpretation of treatment benefit [correction in: BMC Med 2019;17:147]. BMC Med 2019;17:105. 10. 1186/s12916-019-1330-9 31159786
-
(2019)
BMC Med
, vol.17
, pp. 105
-
-
Boutron, I.1
Haneef, R.2
Yavchitz, A.3
-
36
-
-
85043256051
-
The spread of true and false news online
-
Vosoughi S, Roy D, Aral S. The spread of true and false news online. Science 2018;359:1146-51. 10. 1126/science. Aap9559 29590045
-
(2018)
Science
, vol.359
, pp. 1146-1151
-
-
Vosoughi, S.1
Roy, D.2
Aral, S.3
-
37
-
-
85071001892
-
-
Vollmer S, Mateen BA, Bohner G, et al. Machine learning and AI research for patient benefit: 20 critical questions on transparency, replicability, ethics and effectiveness. 2018. https://arxiv. org/abs/1812. 10404.
-
(2018)
Machine Learning and AI Research for Patient Benefit: 20 Critical Questions on Transparency, Replicability, Ethics and Effectiveness
-
-
Vollmer, S.1
Mateen, B.A.2
Bohner, G.3
-
38
-
-
85064322858
-
Reporting of artificial intelligence prediction models
-
Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet 2019;393:1577-9. 10. 1016/S0140-6736(19)30037-6 31007185
-
(2019)
Lancet
, vol.393
, pp. 1577-1579
-
-
Collins, G.S.1
Moons, K.G.M.2
-
39
-
-
4544295352
-
International Committee of Medical Journal Editors. Clinical trial registration: A statement from the International Committee of Medical Journal Editors
-
De Angelis C, Drazen JM, Frizelle FA, et al. International Committee of Medical Journal Editors. Clinical trial registration: A statement from the International Committee of Medical Journal Editors. N Engl J Med 2004;351:1250-1. 10. 1056/NEJMe048225 15356289
-
(2004)
N Engl J Med
, vol.351
, pp. 1250-1251
-
-
De Angelis, C.1
Drazen, J.M.2
Frizelle, F.A.3
-
40
-
-
85055618971
-
The role of the FDA in ensuring the safety and efficacy of artificial intelligence software and devices
-
Allen B. The role of the FDA in ensuring the safety and efficacy of artificial intelligence software and devices. J Am Coll Radiol 2019;16:208-10. 10. 1016/j. jacr. 2018. 09. 007 30389329
-
(2019)
J Am Coll Radiol
, vol.16
, pp. 208-210
-
-
Allen, B.1
-
41
-
-
85062951666
-
FDA backs clinician-free AI imaging diagnostic tools
-
Ratner M. FDA backs clinician-free AI imaging diagnostic tools. Nat Biotechnol 2018;36:673-4. 10. 1038/nbt0818-673a 30080822
-
(2018)
Nat Biotechnol
, vol.36
, pp. 673-674
-
-
Ratner, M.1
|