메뉴 건너뛰기




Volumn 15, Issue 11, 2018, Pages

Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ALGORITHM; ARTICLE; ATELECTASIS; CARDIOMEGALY; CROSS-SECTIONAL STUDY; DISEASE BURDEN; EDEMA; EMPHYSEMA; FEMALE; HOSPITAL PLANNING; HUMAN; JOINT EFFUSION; LEARNING; MAJOR CLINICAL STUDY; MALE; MIDDLE AGED; NATIONAL HEALTH ORGANIZATION; NERVE CELL NETWORK; PATIENT CARE; PNEUMONIA; PREDICTIVE VALUE; PREVALENCE; RECEIVER OPERATING CHARACTERISTIC; TASK PERFORMANCE; THORAX RADIOGRAPHY; VALIDATION PROCESS; AGED; CLINICAL TRIAL; COMPUTER ASSISTED DIAGNOSIS; DIAGNOSTIC IMAGING; MULTICENTER STUDY; PROCEDURES; RADIOLOGY INFORMATION SYSTEM; REPRODUCIBILITY; RETROSPECTIVE STUDY; UNITED STATES;

EID: 85056277365     PISSN: 15491277     EISSN: 15491676     Source Type: Journal    
DOI: 10.1371/journal.pmed.1002683     Document Type: Article
Times cited : (1100)

References (29)
  • 3
    • 85007529863 scopus 로고    scopus 로고
    • Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
    • pmid:27898976
    • Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316: 2402–2410. doi: 10.1001/jama.2016.17216 pmid: 27898976
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3    Stumpe, M.C.4    Wu, D.5    Narayanaswamy, A.6
  • 4
    • 85038438910 scopus 로고    scopus 로고
    • Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes
    • pmid:29234807
    • Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017;318: 2211–2223. doi: 10.1001/jama.2017.18152 pmid: 29234807
    • (2017) JAMA , vol.318 , pp. 2211-2223
    • Ting, D.S.W.1    Cheung, C.Y.-L.2    Lim, G.3    Tan, G.S.W.4    Quang, N.D.5    Gan, A.6
  • 5
    • 85042389905 scopus 로고    scopus 로고
    • Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning
    • pmid:29474911, Elsevier;
    • Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. Elsevier; 2018;172: 1122–1131. doi: 10.1016/j.cell.2018.02.010 pmid: 29474911
    • (2018) Cell , vol.172 , pp. 1122-1131
    • Kermany, D.S.1    Goldbaum, M.2    Cai, W.3    Valentim, C.C.S.4    Liang, H.5    Baxter, S.L.6
  • 9
    • 11444261579 scopus 로고    scopus 로고
    • External validity of randomised controlled trials: “To whom do the results of this trial apply?
    • pmid:15639683
    • Rothwell PM, External validity of randomised controlled trials: “To whom do the results of this trial apply?”Lancet. 2005;365: 82–93. doi: 10.1016/S0140-6736(04)17670-8 pmid: 15639683
    • (2005) Lancet , vol.365 , pp. 82-93
    • Rothwell, P.M.1
  • 10
    • 85022220936 scopus 로고    scopus 로고
    • CONSORT 2010 statement: extension checklist for reporting within person randomised trials
    • pmid:28667088
    • Pandis N, Chung B, Scherer RW, Elbourne D, Altman DG, CONSORT 2010 statement: extension checklist for reporting within person randomised trials. BMJ. 2017;357: j2835. doi: 10.1136/bmj.j2835 pmid: 28667088
    • (2017) BMJ , vol.357 , pp. j2835
    • Pandis, N.1    Chung, B.2    Scherer, R.W.3    Elbourne, D.4    Altman, D.G.5
  • 11
    • 85027869169 scopus 로고    scopus 로고
    • Unintended Consequences of Machine Learning in Medicine
    • pmid:28727867
    • Cabitza F, Rasoini R, Gensini GF, Unintended Consequences of Machine Learning in Medicine. JAMA. 2017;318: 517–518. doi: 10.1001/jama.2017.7797 pmid: 28727867
    • (2017) JAMA , vol.318 , pp. 517-518
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3
  • 13
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • pmid:26017442
    • LeCun Y, Bengio Y, Hinton G, Deep learning. Nature. 2015;521: 436–444. doi: 10.1038/nature14539 pmid: 26017442
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 17
    • 85046006819 scopus 로고    scopus 로고
    • Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports
    • pmid:29381109
    • Zech J, Pain M, Titano J, Badgeley M, Schefflein J, Su A, et al. Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports. Radiology. 2018;287(2): 570–580. doi: 10.1148/radiol.2018171093 pmid: 29381109
    • (2018) Radiology , vol.287 , Issue.2 , pp. 570-580
    • Zech, J.1    Pain, M.2    Titano, J.3    Badgeley, M.4    Schefflein, J.5    Su, A.6
  • 20
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • pmid:3203132
    • DeLong ER, DeLong DM, Clarke-Pearson DL, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44: 837–845. pmid: 3203132
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 21
    • 79952709519 scopus 로고    scopus 로고
    • pROC: an open-source package for R and S+ to analyze and compare ROC curves
    • pmid:21414208
    • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12: 77. doi: 10.1186/1471-2105-12-77 pmid: 21414208
    • (2011) BMC Bioinformatics , vol.12 , pp. 77
    • Robin, X.1    Turck, N.2    Hainard, A.3    Tiberti, N.4    Lisacek, F.5    Sanchez, J.-C.6
  • 23
    • 84923923813 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement
    • pmid:25560714
    • Collins GS, Reitsma JB, Altman DG, Moons KGM, Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Ann Intern Med2015; 162:55–63. doi: 10.7326/M14-0697 pmid: 25560714
    • (2015) Ann Intern Med , vol.162 , pp. 55-63
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.M.4
  • 24
    • 84905656517 scopus 로고    scopus 로고
    • Towards better clinical prediction models: seven steps for development and an ABCD for validation
    • pmid:24898551
    • Steyerberg EW, Vergouwe Y, Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal2014; 35:1925–1931. doi: 10.1093/eurheartj/ehu207 pmid: 24898551
    • (2014) European Heart Journal , vol.35 , pp. 1925-1931
    • Steyerberg, E.W.1    Vergouwe, Y.2
  • 26
    • 85045052300 scopus 로고    scopus 로고
    • MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling
    • pmid:29404850
    • Mutasa S, Chang PD, Ruzal-Shapiro C, Ayyala R, MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling. J Digit Imaging. 2018;31(4): 513–519. doi: 10.1007/s10278-018-0053-3 pmid: 29404850
    • (2018) J Digit Imaging , vol.31 , Issue.4 , pp. 513-519
    • Mutasa, S.1    Chang, P.D.2    Ruzal-Shapiro, C.3    Ayyala, R.4
  • 28
    • 85050220357 scopus 로고    scopus 로고
    • Dec, [cited 26 Jan 2018]. In: Luke Oakden-Rayner [Internet]. Available from
    • Oakden-Rayner L, Exploring the ChestXray14 dataset: problems. 18Dec2017 [cited 26 Jan 2018]. In: Luke Oakden-Rayner [Internet]. Available from: https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-dataset-problems/
    • (2017) Exploring the ChestXray14 dataset: problems
    • Oakden-Rayner, L.1
  • 29
    • 33847155159 scopus 로고    scopus 로고
    • Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults
    • Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44Suppl 2: S27–72
    • (2007) Clin Infect Dis , vol.44 , pp. S27-S72
    • Mandell, L.A.1    Wunderink, R.G.2    Anzueto, A.3    Bartlett, J.G.4    Campbell, G.D.5    Dean, N.C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.