-
1
-
-
85043729011
-
-
[cited 1 July 2018]. Preprint. Available from
-
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM, ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases; 2017 [cited 1 July 2018]. Preprint. Available from: https://arxiv.org/abs/1705.02315
-
(2017)
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
-
-
Wang, X.1
Peng, Y.2
Lu, L.3
Lu, Z.4
Bagheri, M.5
Summers, R.M.6
-
2
-
-
85042494529
-
-
[cited 1 July 2018]. Preprint. Available from
-
Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning; 2017 [cited 1 July 2018]. Preprint. Available from: https://arxiv.org/abs/1711.05225
-
(2017)
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
-
-
Rajpurkar, P.1
Irvin, J.2
Zhu, K.3
Yang, B.4
Mehta, H.5
Duan, T.6
-
3
-
-
85007529863
-
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
-
pmid:27898976
-
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316: 2402–2410. doi: 10.1001/jama.2016.17216 pmid: 27898976
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
Stumpe, M.C.4
Wu, D.5
Narayanaswamy, A.6
-
4
-
-
85038438910
-
Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes
-
pmid:29234807
-
Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017;318: 2211–2223. doi: 10.1001/jama.2017.18152 pmid: 29234807
-
(2017)
JAMA
, vol.318
, pp. 2211-2223
-
-
Ting, D.S.W.1
Cheung, C.Y.-L.2
Lim, G.3
Tan, G.S.W.4
Quang, N.D.5
Gan, A.6
-
5
-
-
85042389905
-
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning
-
pmid:29474911, Elsevier;
-
Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. Elsevier; 2018;172: 1122–1131. doi: 10.1016/j.cell.2018.02.010 pmid: 29474911
-
(2018)
Cell
, vol.172
, pp. 1122-1131
-
-
Kermany, D.S.1
Goldbaum, M.2
Cai, W.3
Valentim, C.C.S.4
Liang, H.5
Baxter, S.L.6
-
6
-
-
84909978410
-
-
[cited 1 July 2018]. Preprint. Available from
-
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recognition Challenge; 2014 [cited 1 July 2018]. Preprint. Available from: https://arxiv.org/abs/1409.0575
-
(2014)
ImageNet Large Scale Visual Recognition Challenge
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
-
9
-
-
11444261579
-
External validity of randomised controlled trials: “To whom do the results of this trial apply?
-
pmid:15639683
-
Rothwell PM, External validity of randomised controlled trials: “To whom do the results of this trial apply?”Lancet. 2005;365: 82–93. doi: 10.1016/S0140-6736(04)17670-8 pmid: 15639683
-
(2005)
Lancet
, vol.365
, pp. 82-93
-
-
Rothwell, P.M.1
-
10
-
-
85022220936
-
CONSORT 2010 statement: extension checklist for reporting within person randomised trials
-
pmid:28667088
-
Pandis N, Chung B, Scherer RW, Elbourne D, Altman DG, CONSORT 2010 statement: extension checklist for reporting within person randomised trials. BMJ. 2017;357: j2835. doi: 10.1136/bmj.j2835 pmid: 28667088
-
(2017)
BMJ
, vol.357
, pp. j2835
-
-
Pandis, N.1
Chung, B.2
Scherer, R.W.3
Elbourne, D.4
Altman, D.G.5
-
11
-
-
85027869169
-
Unintended Consequences of Machine Learning in Medicine
-
pmid:28727867
-
Cabitza F, Rasoini R, Gensini GF, Unintended Consequences of Machine Learning in Medicine. JAMA. 2017;318: 517–518. doi: 10.1001/jama.2017.7797 pmid: 28727867
-
(2017)
JAMA
, vol.318
, pp. 517-518
-
-
Cabitza, F.1
Rasoini, R.2
Gensini, G.F.3
-
12
-
-
84963729804
-
Preparing a collection of radiology examinations for distribution and retrieval
-
pmid:26133894
-
Demner-Fushman D, Kohli MD, Rosenman MB, Shooshan SE, Rodriguez L, Antani S, et al. Preparing a collection of radiology examinations for distribution and retrieval. J Am Med Inform Assoc. 2016;23: 304–310. doi: 10.1093/jamia/ocv080 pmid: 26133894
-
(2016)
J Am Med Inform Assoc
, vol.23
, pp. 304-310
-
-
Demner-Fushman, D.1
Kohli, M.D.2
Rosenman, M.B.3
Shooshan, S.E.4
Rodriguez, L.5
Antani, S.6
-
13
-
-
84930630277
-
Deep learning
-
pmid:26017442
-
LeCun Y, Bengio Y, Hinton G, Deep learning. Nature. 2015;521: 436–444. doi: 10.1038/nature14539 pmid: 26017442
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
16
-
-
85021676072
-
-
[cited 1 July 2018]. Preprint. Available from
-
Zhang C, Bengio S, Hardt M, Recht B, Vinyals O, Understanding deep learning requires rethinking generalization; 2016 [cited 1 July 2018]. Preprint. Available from: https://arxiv.org/abs/1611.03530
-
(2016)
Understanding deep learning requires rethinking generalization
-
-
Zhang, C.1
Bengio, S.2
Hardt, M.3
Recht, B.4
Vinyals, O.5
-
17
-
-
85046006819
-
Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports
-
pmid:29381109
-
Zech J, Pain M, Titano J, Badgeley M, Schefflein J, Su A, et al. Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports. Radiology. 2018;287(2): 570–580. doi: 10.1148/radiol.2018171093 pmid: 29381109
-
(2018)
Radiology
, vol.287
, Issue.2
, pp. 570-580
-
-
Zech, J.1
Pain, M.2
Titano, J.3
Badgeley, M.4
Schefflein, J.5
Su, A.6
-
18
-
-
85047343776
-
-
[cited 1 July 2018]. Preprint. Available from
-
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, et al. Automatic differentiation in PyTorch; 2017 [cited 1 July 2018]. Preprint. Available from: https://openreview.net/forum?id=BJJsrmfCZ
-
(2017)
Automatic differentiation in PyTorch
-
-
Paszke, A.1
Gross, S.2
Chintala, S.3
Chanan, G.4
Yang, E.5
DeVito, Z.6
-
19
-
-
84990054197
-
-
Preprint. Available from
-
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A, Learning Deep Features for Discriminative Localization; 2015. Preprint. Available from: https://arxiv.org/abs/1512.04150
-
(2015)
Learning Deep Features for Discriminative Localization
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
-
20
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
-
pmid:3203132
-
DeLong ER, DeLong DM, Clarke-Pearson DL, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44: 837–845. pmid: 3203132
-
(1988)
Biometrics
, vol.44
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
21
-
-
79952709519
-
pROC: an open-source package for R and S+ to analyze and compare ROC curves
-
pmid:21414208
-
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12: 77. doi: 10.1186/1471-2105-12-77 pmid: 21414208
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 77
-
-
Robin, X.1
Turck, N.2
Hainard, A.3
Tiberti, N.4
Lisacek, F.5
Sanchez, J.-C.6
-
22
-
-
80555140075
-
Scikit-learn: Machine Learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12: 2825–2830
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
-
23
-
-
84923923813
-
Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement
-
pmid:25560714
-
Collins GS, Reitsma JB, Altman DG, Moons KGM, Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Ann Intern Med2015; 162:55–63. doi: 10.7326/M14-0697 pmid: 25560714
-
(2015)
Ann Intern Med
, vol.162
, pp. 55-63
-
-
Collins, G.S.1
Reitsma, J.B.2
Altman, D.G.3
Moons, K.G.M.4
-
24
-
-
84905656517
-
Towards better clinical prediction models: seven steps for development and an ABCD for validation
-
pmid:24898551
-
Steyerberg EW, Vergouwe Y, Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal2014; 35:1925–1931. doi: 10.1093/eurheartj/ehu207 pmid: 24898551
-
(2014)
European Heart Journal
, vol.35
, pp. 1925-1931
-
-
Steyerberg, E.W.1
Vergouwe, Y.2
-
25
-
-
85055470026
-
-
[cited 1 July 2018]. Preprint. Available from
-
Gale W, Oakden-Rayner L, Carneiro G, Bradley AP, Palmer LJ, Detecting hip fractures with radiologist-level performance using deep neural networks; 2017 [cited 1 July 2018]. Preprint. Available from: https://arxiv.org/abs/1711.06504
-
(2017)
Detecting hip fractures with radiologist-level performance using deep neural networks
-
-
Gale, W.1
Oakden-Rayner, L.2
Carneiro, G.3
Bradley, A.P.4
Palmer, L.J.5
-
26
-
-
85045052300
-
MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling
-
pmid:29404850
-
Mutasa S, Chang PD, Ruzal-Shapiro C, Ayyala R, MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling. J Digit Imaging. 2018;31(4): 513–519. doi: 10.1007/s10278-018-0053-3 pmid: 29404850
-
(2018)
J Digit Imaging
, vol.31
, Issue.4
, pp. 513-519
-
-
Mutasa, S.1
Chang, P.D.2
Ruzal-Shapiro, C.3
Ayyala, R.4
-
27
-
-
85029815117
-
-
[cited 1 July 2018]. Preprint. Available from
-
Geras KJ, Wolfson S, Gene Kim S, Moy L, Cho K, High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks; 2017 [cited 1 July 2018]. Preprint. Available from: https://arxiv.org/abs/1703.07047
-
(2017)
High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks
-
-
Geras, K.J.1
Wolfson, S.2
Gene Kim, S.3
Moy, L.4
Cho, K.5
-
28
-
-
85050220357
-
-
Dec, [cited 26 Jan 2018]. In: Luke Oakden-Rayner [Internet]. Available from
-
Oakden-Rayner L, Exploring the ChestXray14 dataset: problems. 18Dec2017 [cited 26 Jan 2018]. In: Luke Oakden-Rayner [Internet]. Available from: https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-dataset-problems/
-
(2017)
Exploring the ChestXray14 dataset: problems
-
-
Oakden-Rayner, L.1
-
29
-
-
33847155159
-
Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults
-
Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44Suppl 2: S27–72
-
(2007)
Clin Infect Dis
, vol.44
, pp. S27-S72
-
-
Mandell, L.A.1
Wunderink, R.G.2
Anzueto, A.3
Bartlett, J.G.4
Campbell, G.D.5
Dean, N.C.6
|