-
1
-
-
84893370827
-
The current state of diabetes mellitus in India
-
24567766
-
Kaveeshwar SA, Cornwall J. The current state of diabetes mellitus in India. Australas Med J. 2014; 7 (1): 45-48. doi: 10.4066/AMJ.2014.1979 24567766
-
(2014)
Australas Med J
, vol.7
, Issue.1
, pp. 45-48
-
-
Kaveeshwar, S.A.1
Cornwall, J.2
-
2
-
-
35748952166
-
Analysis of a comprehensive diabetic retinopathy screening model for rural and urban diabetics in developing countries
-
17947265
-
Rani PK, Raman R, Sharma V, Analysis of a comprehensive diabetic retinopathy screening model for rural and urban diabetics in developing countries. Br J Ophthalmol. 2007; 91 (11): 1425-1429. doi: 10.1136/bjo.2007.120659 17947265
-
(2007)
Br J Ophthalmol
, vol.91
, Issue.11
, pp. 1425-1429
-
-
Rani, P.K.1
Raman, R.2
Sharma, V.3
-
3
-
-
67649965572
-
-
Switzerland, 9-11 November 2005.. Accessed May 12, 2019.
-
World Health Organization. Prevention of blindness from diabetes mellitus: report of a WHO consultation in Geneva, Switzerland, 9-11 November 2005. https://www.who.int/blindness/Prevention%20of%20Blindness%20from%20Diabetes%20Mellitus-with-cover-small.pdf. Accessed May 12, 2019.
-
Prevention of Blindness from Diabetes Mellitus: Report of a WHO Consultation in Geneva
-
-
-
4
-
-
0036724036
-
Diabetic retinopathy among self reported diabetics in southern India: A population based assessment
-
12185129
-
Narendran V, John RK, Raghuram A, Ravindran RD, Nirmalan PK, Thulasiraj RD. Diabetic retinopathy among self reported diabetics in southern India: a population based assessment. Br J Ophthalmol. 2002; 86 (9): 1014-1018. doi: 10.1136/bjo.86.9.1014 12185129
-
(2002)
Br J Ophthalmol
, vol.86
, Issue.9
, pp. 1014-1018
-
-
Narendran, V.1
John, R.K.2
Raghuram, A.3
Ravindran, R.D.4
Nirmalan, P.K.5
Thulasiraj, R.D.6
-
5
-
-
64849084966
-
Prevalence and risk factors for diabetic retinopathy: A population-based assessment from Theni District, south India
-
19091856
-
Namperumalsamy P, Kim R, Vignesh TP, Prevalence and risk factors for diabetic retinopathy: a population-based assessment from Theni District, south India. Br J Ophthalmol. 2009; 93 (4): 429-434. 19091856
-
(2009)
Br J Ophthalmol
, vol.93
, Issue.4
, pp. 429-434
-
-
Namperumalsamy, P.1
Kim, R.2
Vignesh, T.P.3
-
6
-
-
23244438018
-
Prevalence of diabetic retinopathy in urban India: The Chennai Urban Rural Epidemiology Study (CURES) eye study, I
-
15980218
-
Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R, Mohan V. Prevalence of diabetic retinopathy in urban India: the Chennai Urban Rural Epidemiology Study (CURES) eye study, I. Invest Ophthalmol Vis Sci. 2005; 46 (7): 2328-2333. doi: 10.1167/iovs.05-0019 15980218
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, Issue.7
, pp. 2328-2333
-
-
Rema, M.1
Premkumar, S.2
Anitha, B.3
Deepa, R.4
Pradeepa, R.5
Mohan, V.6
-
8
-
-
84880137032
-
Current state of care for diabetic retinopathy in India
-
23657764
-
Ramasamy K, Raman R, Tandon M. Current state of care for diabetic retinopathy in India. Curr Diab Rep. 2013; 13 (4): 460-468. doi: 10.1007/s11892-013-0388-6 23657764
-
(2013)
Curr Diab Rep
, vol.13
, Issue.4
, pp. 460-468
-
-
Ramasamy, K.1
Raman, R.2
Tandon, M.3
-
9
-
-
0034049633
-
A telemedical approach to the screening of diabetic retinopathy: Digital fundus photography
-
10868863
-
Liesenfeld B, Kohner E, Piehlmeier W, A telemedical approach to the screening of diabetic retinopathy: digital fundus photography. Diabetes Care. 2000; 23 (3): 345-348. doi: 10.2337/diacare.23.3.345 10868863
-
(2000)
Diabetes Care
, vol.23
, Issue.3
, pp. 345-348
-
-
Liesenfeld, B.1
Kohner, E.2
Piehlmeier, W.3
-
10
-
-
84875210191
-
The cost-utility of telemedicine to screen for diabetic retinopathy in India
-
23211635
-
Rachapelle S, Legood R, Alavi Y, The cost-utility of telemedicine to screen for diabetic retinopathy in India. Ophthalmology. 2013; 120 (3): 566-573. doi: 10.1016/j.ophtha.2012.09.002 23211635
-
(2013)
Ophthalmology
, vol.120
, Issue.3
, pp. 566-573
-
-
Rachapelle, S.1
Legood, R.2
Alavi, Y.3
-
11
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542: 115-118. doi: 10.1038/nature21056
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
13
-
-
85038431889
-
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
-
29234806
-
Ehteshami Bejnordi B, Veta M, Johannes van Diest P,; the CAMELYON16 Consortium. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017; 318 (22): 2199-2210. doi: 10.1001/jama.2017.14585 29234806
-
(2017)
JAMA
, vol.318
, Issue.22
, pp. 2199-2210
-
-
Ehteshami Bejnordi, B.1
Veta, M.2
Johannes Van Diest, P.3
-
14
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
27898976
-
Gulshan V, Peng L, Coram M, Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316 (22): 2402-2410. doi: 10.1001/jama.2016.17216 27898976
-
(2016)
JAMA
, vol.316
, Issue.22
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
15
-
-
85038438910
-
Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
-
29234807
-
Ting DSW, Cheung CY-L, Lim G, Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017; 318 (22): 2211-2223. doi: 10.1001/jama.2017.18152 29234807
-
(2017)
JAMA
, vol.318
, Issue.22
, pp. 2211-2223
-
-
Ting, D.S.W.1
Cheung, C.-L.2
Lim, G.3
-
16
-
-
85043470011
-
Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy
-
29548646
-
Krause J, Gulshan V, Rahimy E, Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology. 2018; 125 (8): 1264-1272. doi: 10.1016/j.ophtha.2018.01.034 29548646
-
(2018)
Ophthalmology
, vol.125
, Issue.8
, pp. 1264-1272
-
-
Krause, J.1
Gulshan, V.2
Rahimy, E.3
-
17
-
-
85016221341
-
Automated identification of diabetic retinopathy using deep learning
-
28359545
-
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017; 124 (7): 962-969. doi: 10.1016/j.ophtha.2017.02.008 28359545
-
(2017)
Ophthalmology
, vol.124
, Issue.7
, pp. 962-969
-
-
Gargeya, R.1
Leng, T.2
-
18
-
-
85034636594
-
Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
-
28973096
-
Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017; 135 (11): 1170-1176. doi: 10.1001/jamaophthalmol.2017.3782 28973096
-
(2017)
JAMA Ophthalmol
, vol.135
, Issue.11
, pp. 1170-1176
-
-
Burlina, P.M.1
Joshi, N.2
Pekala, M.3
Pacheco, K.D.4
Freund, D.E.5
Bressler, N.M.6
-
19
-
-
85095168170
-
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
-
Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Med. 2018; 1: 39. doi: 10.1038/s41746-018-0040-6
-
(2018)
NPJ Digital Med
, vol.1
, pp. 39
-
-
Abràmoff, M.D.1
Lavin, P.T.2
Birch, M.3
Shah, N.4
Folk, J.C.5
-
20
-
-
79751516079
-
-
International clinical diabetic retinopathy disease severity scale, detailed table.. Accessed 14 Oct, 2016.
-
American Academy of Ophthalmology. International clinical diabetic retinopathy disease severity scale, detailed table. http://www.icoph.org/dynamic/attachments/resources/diabetic-retinopathy-detail.pdf. Accessed 14 Oct, 2016.
-
International Clinical Diabetic Retinopathy Disease Severity Scale
-
-
-
21
-
-
84986296808
-
-
Rethinking the inception architecture for computer vision. Paper presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition; June 27-30, 2016; Las Vegas, NV.. Accessed May 12, 2019.
-
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. Paper presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition; June 27-30, 2016; Las Vegas, NV. https://ieeexplore.ieee.org/document/7780677. Accessed May 12, 2019.
-
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
22
-
-
0001072895
-
The use of confidence or fiducial limits illustrated in the case of the binomial
-
Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934; 26 (4): 404-413. doi: 10.1093/biomet/26.4.404
-
(1934)
Biometrika
, vol.26
, Issue.4
, pp. 404-413
-
-
Clopper, C.J.1
Pearson, E.S.2
-
23
-
-
84875180389
-
Automated analysis of retinal images for detection of referable diabetic retinopathy
-
23494039
-
Abràmoff MD, Folk JC, Han DP, Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013; 131 (3): 351-357. doi: 10.1001/jamaophthalmol.2013.1743 23494039
-
(2013)
JAMA Ophthalmol
, vol.131
, Issue.3
, pp. 351-357
-
-
Abràmoff, M.D.1
Folk, J.C.2
Han, D.P.3
-
24
-
-
85029182331
-
Screening intervals for diabetic retinopathy and implications for care
-
28875458
-
Scanlon PH. Screening intervals for diabetic retinopathy and implications for care. Curr Diab Rep. 2017; 17 (10): 96. doi: 10.1007/s11892-017-0928-6 28875458
-
(2017)
Curr Diab Rep
, vol.17
, Issue.10
, pp. 96
-
-
Scanlon, P.H.1
-
25
-
-
84958544414
-
Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography
-
26719967
-
Wang YT, Tadarati M, Wolfson Y, Bressler SB, Bressler NM. Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography. JAMA Ophthalmol. 2016; 134 (2): 222-228. doi: 10.1001/jamaophthalmol.2015.5332 26719967
-
(2016)
JAMA Ophthalmol
, vol.134
, Issue.2
, pp. 222-228
-
-
Wang, Y.T.1
Tadarati, M.2
Wolfson, Y.3
Bressler, S.B.4
Bressler, N.M.5
|