-
1
-
-
85051660368
-
WHO Classification of Tumours of the Urinary System and Male Genital Organs
-
WHO Classification of Tumours of the Urinary System and Male Genital Organs. International Agency for Research on Cancer (IARC) (2016)
-
(2016)
International Agency for Research on Cancer (IARC)
-
-
-
2
-
-
0015950349
-
Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging
-
Gleason, D. F. & Mellinger, G. T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111, 58–64 (1974)
-
(1974)
J. Urol.
, vol.111
, pp. 58-64
-
-
Gleason, D.F.1
Mellinger, G.T.2
-
3
-
-
84953897128
-
Clinical Validation of the 2005 ISUP Gleason Grading System in a Cohort of Intermediate and High Risk Men Undergoing Radical Prostatectomy
-
PID: 26731672
-
Faraj, S. F. et al. Clinical Validation of the 2005 ISUP Gleason Grading System in a Cohort of Intermediate and High Risk Men Undergoing Radical Prostatectomy. PLoS One 11, e0146189 (2016)
-
(2016)
PLoS One
, vol.11
-
-
Faraj, S.F.1
-
4
-
-
84960105473
-
Grading of prostatic adenocarcinoma: current state and prognostic implications
-
PID: 26956509
-
Gordetsky, J. & Epstein, J. Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn. Pathol. 11, 25 (2016)
-
(2016)
Diagn. Pathol.
, vol.11
, pp. 25
-
-
Gordetsky, J.1
Epstein, J.2
-
5
-
-
85049557929
-
Prostate cancer grading: a decade after the 2005 modified system
-
PID: 29297487
-
Epstein, J. I. Prostate cancer grading: a decade after the 2005 modified system. Mod. Pathol. 31, S47–63 (2018)
-
(2018)
Mod. Pathol.
, vol.31
, pp. S47-S63
-
-
Epstein, J.I.1
-
6
-
-
80052324279
-
Computational pathology: Challenges and promises for tissue analysis
-
PID: 21481567
-
Fuchs, T. J. & Buhmann, J. M. Computational pathology: Challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 35, 515–530 (2011)
-
(2011)
Comput. Med. Imaging Graph.
, vol.35
, pp. 515-530
-
-
Fuchs, T.J.1
Buhmann, J.M.2
-
7
-
-
84875905305
-
Digital imaging in pathology: whole-slide imaging and beyond
-
PID: 23157334
-
Ghaznavi, F., Evans, A., Madabhushi, A. & Feldman, M. Digital imaging in pathology: whole-slide imaging and beyond. Annu. Rev. Pathol. 8, 331–359 (2013)
-
(2013)
Annu. Rev. Pathol.
, vol.8
, pp. 331-359
-
-
Ghaznavi, F.1
Evans, A.2
Madabhushi, A.3
Feldman, M.4
-
8
-
-
81055146760
-
Systematic analysis of breast cancer morphology uncovers stromal features associated with survival
-
PID: 22072638
-
Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 (2011)
-
(2011)
Sci. Transl. Med.
, vol.3
, pp. 108ra113
-
-
Beck, A.H.1
-
9
-
-
84858439207
-
Prostate cancer grading: Gland segmentation and structural features
-
Nguyen, K., Sabata, B. & Jain, A. K. Prostate cancer grading: Gland segmentation and structural features. Pattern Recognit. Lett. 33, 951–961 (2012)
-
(2012)
Pattern Recognit. Lett.
, vol.33
, pp. 951-961
-
-
Nguyen, K.1
Sabata, B.2
Jain, A.K.3
-
10
-
-
84867896468
-
Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer
-
PID: 23110677
-
Doyle, S., Feldman, M. D., Shih, N., Tomaszewski, J. & Madabhushi, A. Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. BMC Bioinformatics 13, 282 (2012)
-
(2012)
BMC Bioinformatics
, vol.13
-
-
Doyle, S.1
Feldman, M.D.2
Shih, N.3
Tomaszewski, J.4
Madabhushi, A.5
-
11
-
-
84930630277
-
Deep learning
-
PID: 26017442
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
12
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
PID: 28117445
-
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
-
13
-
-
85058931275
-
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
-
Rajpurkar, P. et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv preprint arXiv 1711, 05225 (2017)
-
(2017)
arXiv preprint arXiv
, vol.1711
, pp. 05225
-
-
Rajpurkar, P.1
-
14
-
-
85042201755
-
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
-
Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering 2, 158–164 (2018)
-
(2018)
Nature Biomedical Engineering
, vol.2
, pp. 158-164
-
-
Poplin, R.1
-
15
-
-
84980022857
-
Deep learning for computational biology
-
&
-
Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. 12, 878 (2016)
-
(2016)
Mol. Syst. Biol.
, vol.12
, pp. 878
-
-
Angermueller, C.1
Pärnamaa, T.2
Parts, L.3
Stegle, O.4
-
16
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
PID: 24579167
-
Cireşan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. Med. Image Comput. Comput. Assist. Interv. 16, 411–418 (2013)
-
(2013)
Med. Image Comput. Comput. Assist. Interv.
, vol.16
, pp. 411-418
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
17
-
-
84901774997
-
Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks
-
International Society for Optics and Photonics
-
Cruz-Roa, A. et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Medical Imaging 2014: Digital Pathology 9041. International Society for Optics and Photonics (2014)
-
(2014)
Medical Imaging 2014: Digital Pathology
, pp. 9041
-
-
Cruz-Roa, A.1
-
18
-
-
84970028091
-
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
-
PID: 27212078
-
Litjens, G. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016)
-
(2016)
Sci. Rep.
, vol.6
-
-
Litjens, G.1
-
21
-
-
85051667593
-
Convolutional Neural Networks for Prostate Cancer Recurrence Prediction. Medical Imaging 2017: Digital Pathology 10140
-
Kumar, N. et al. Convolutional Neural Networks for Prostate Cancer Recurrence Prediction. Medical Imaging 2017: Digital Pathology 10140. International Society for Optics and Photonics (2017)
-
(2017)
International Society for Optics and Photonics
-
-
Kumar, N.1
-
22
-
-
85020295256
-
Heterogeneity characterization of immunohistochemistry stained tissue using convolutional autoencoder
-
International Society for Optics and Photonics
-
Zerhouni, E., Prisacari, B., Zhong, Q., Wild, P. & Gabrani, M. Heterogeneity characterization of immunohistochemistry stained tissue using convolutional autoencoder. Medical Imaging 2017: Digital Pathology 10140. International Society for Optics and Photonics (2017)
-
(2017)
Medical Imaging 2017: Digital Pathology
, vol.10140
-
-
Zerhouni, E.1
Prisacari, B.2
Zhong, Q.3
Wild, P.4
Gabrani, M.5
-
23
-
-
84978387816
-
Towards grading gleason score using generically trained deep convolutional neural networks
-
Källén, H., Molin, J., Heyden, A., Lundström, C. & Åström, K. Towards grading gleason score using generically trained deep convolutional neural networks. IEEE 13th International Symposium on Biomedical Imaging (ISBI) 1163–1167 (2016)
-
(2016)
IEEE 13Th International Symposium on Biomedical Imaging (ISBI)
, pp. 1163-1167
-
-
Källén, H.1
Molin, J.2
Heyden, A.3
Lundström, C.4
Åström, K.5
-
24
-
-
85051622016
-
-
Zhou, N., Fedorov, A., Fennessy, F., Kikinis, R. & Gao, Y. Large scale digital prostate pathology image analysis combining feature extraction and deep neural network. arXiv preprint arXiv:1705.02678 (2017)
-
(2017)
Large Scale Digital Prostate Pathology Image Analysis Combining Feature Extraction and Deep Neural Network
-
-
Zhou, N.1
Fedorov, A.2
Fennessy, F.3
Kikinis, R.4
Gao, Y.5
-
25
-
-
84884994218
-
The Cancer Genome Atlas Pan-Cancer analysis project
-
Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013)
-
(2013)
Nat. Genet.
, vol.45
, pp. 1113-1120
-
-
-
27
-
-
85015420724
-
A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients
-
PID: 28291248
-
Zhong, Q. et al. A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients. Sci Data 4, 170014 (2017)
-
(2017)
Sci Data
, vol.4
-
-
Zhong, Q.1
-
28
-
-
84947041871
-
ImageNet Large Scale Visual Recognition Challenge
-
Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115, 211–252 (2015)
-
(2015)
Int. J. Comput. Vis.
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
-
29
-
-
84933585162
-
Very Deep Convolutional Networks for Large-Scale Image Recognition
-
Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv 1409, 1556 (2014)
-
(2014)
arXiv preprint arXiv
, vol.1409
, pp. 1556
-
-
Simonyan, K.1
Zisserman, A.2
-
30
-
-
84986296808
-
Rethinking the Inception Architecture for Computer Vision
-
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
31
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
32
-
-
85035343801
-
Densely Connected Convolutional Networks
-
Zhuang, G., Huang, L., Weinberger, K. Q. & van der Maaten, L. Densely Connected Convolutional Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Zhuang, G.1
Huang, L.2
Weinberger, K.Q.3
van Der Maaten, L.4
-
34
-
-
84973587732
-
A Coefficient of Agreement for Nominal Scales
-
Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 20, 37–46 (1960)
-
(1960)
Educ. Psychol. Meas.
, vol.20
, pp. 37-46
-
-
Cohen, J.1
-
35
-
-
84986247435
-
Learning deep features for discriminative localization
-
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2921–2929 (2016)
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2921-2929
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
-
37
-
-
84936797319
-
A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score
-
PID: 26166626
-
Epstein, J. I. et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 69, 428–435 (2016)
-
(2016)
Eur. Urol.
, vol.69
, pp. 428-435
-
-
Epstein, J.I.1
-
38
-
-
84962780858
-
Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity
-
PID: 27052161
-
Zhong, Q. et al. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity. Sci Rep. 6, 24146 (2016)
-
(2016)
Sci Rep.
, vol.6
-
-
Zhong, Q.1
-
39
-
-
79952254227
-
KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy
-
PID: 21220479
-
Mortezavi, A. et al. KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clin. Cancer Res. 17, 1111–1121 (2011)
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 1111-1121
-
-
Mortezavi, A.1
-
40
-
-
85041958073
-
Comprehensive immunohistochemical analysis of PD-L1 shows scarce expression in castration-resistant prostate cancer
-
PID: 29535806
-
Fankhauser, C. D. et al. Comprehensive immunohistochemical analysis of PD-L1 shows scarce expression in castration-resistant prostate cancer. Oncotarget 9, 10284–10293 (2018)
-
(2018)
Oncotarget
, vol.9
, pp. 10284-10293
-
-
Fankhauser, C.D.1
-
41
-
-
84899641806
-
TMARKER: A free software toolkit for histopathological cell counting and staining estimation
-
Schüffler. TMARKER: A free software toolkit for histopathological cell counting and staining estimation. J. Pathol. Inform. 4, 2 (2013)
-
(2013)
J. Pathol. Inform.
, vol.4
, Issue.2
-
-
|