-
1
-
-
84911409986
-
Seeing 3d chairs: Exemplar part-based 2d-3d alignment using a large dataset of cad models
-
M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic. Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models. In CVPR, 2014.
-
(2014)
CVPR
-
-
Aubry, M.1
Maturana, D.2
Efros, A.3
Russell, B.4
Sivic, J.5
-
3
-
-
85018259814
-
-
arXiv
-
Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable representation learning by information maximizing generative adversarial nets. arXiv, 2016.
-
(2016)
Infogan: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
-
-
Chen, X.1
Duan, Y.2
Houthooft, R.3
Schulman, J.4
Sutskever, I.5
Abbeel, P.6
-
4
-
-
85083952152
-
Discovering hidden factors of variation in deep networks
-
Brian Cheung, Jesse A. Levezey, Arjun K. Bansal, and Bruno A. Olshausen. Discovering hidden factors of variation in deep networks. In Proceedings of the International Conference on Learning Representations, Workshop Track, 2015.
-
(2015)
Proceedings of the International Conference on Learning Representations, Workshop Track
-
-
Cheung, B.1
Levezey, J.A.2
Bansal, A.K.3
Olshausen, B.A.4
-
5
-
-
85083950051
-
Transformation properties of learned visual representations
-
T. Cohen and M. Welling. Transformation properties of learned visual representations. In ICLR, 2015.
-
(2015)
ICLR
-
-
Cohen, T.1
Welling, M.2
-
10
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. NIPS, pp. 2672-2680, 2014.
-
(2014)
NIPS
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
11
-
-
84965139813
-
Learning to linearize under uncertainty
-
Ross Goroshin, Michael Mathieu, and Yann LeCun. Learning to linearize under uncertainty. NIPS, 2015.
-
(2015)
NIPS
-
-
Goroshin, R.1
Mathieu, M.2
LeCun, Y.3
-
13
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to variational methods for graphical models. Machine learning, 37(2):183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
14
-
-
85083954103
-
Bayesian representation learning with oracle constraints
-
Theofanis Karaletsos, Serge Belongie, and Gunnar Rätsch. Bayesian representation learning with oracle constraints. ICLR, 2016.
-
(2016)
ICLR
-
-
Karaletsos, T.1
Belongie, S.2
Rätsch, G.3
-
17
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational bayes. ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
21
-
-
84973917446
-
Deep learning face attributes in the wild
-
Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. ICCV, 2015.
-
(2015)
ICCV
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
22
-
-
72349091918
-
A 3d face model for pose and illumination invariant face recognition
-
P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3d face model for pose and illumination invariant face recognition. AVSS, 2009.
-
(2009)
AVSS
-
-
Paysan, P.1
Knothe, R.2
Amberg, B.3
Romdhani, S.4
Vetter, T.5
-
23
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, and David Cournapeau. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 2011.
-
(2011)
Journal of Machine Learning Research
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
-
25
-
-
84919832734
-
Learning to disentangle factors of variation with manifold interaction
-
Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning to disentangle factors of variation with manifold interaction. ICML, 2014.
-
(2014)
ICML
-
-
Reed, S.1
Sohn, K.2
Zhang, Y.3
Lee, H.4
-
29
-
-
84989923527
-
-
arXiv
-
Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training GANs. arXiv, 2016. URL http://arxiv.org/abs/1606.03498.
-
(2016)
Improved Techniques for Training GANs
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
30
-
-
0040422903
-
Learning factorial codes by predictability minimization
-
Jürgen Schmidhuber. Learning factorial codes by predictability minimization. Neural Computation, 4(6):863-869, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.6
, pp. 863-869
-
-
Schmidhuber, J.1
-
31
-
-
84986308391
-
-
arXiv
-
Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-Time single image and video Super-Resolution using an efficient Sub-Pixel convolutional neural network. arXiv, 2016.
-
(2016)
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
-
-
Shi, W.1
Caballero, J.2
Huszár, F.3
Totz, J.4
Aitken, A.P.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
32
-
-
84897535175
-
Tensor analyzers
-
Atlanta, USA, 2013
-
Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey Hinton. Tensor analyzers. In Proceedings of the 30th International Conference on Machine Learning, 2013, Atlanta, USA, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
-
-
Tang, Y.1
Salakhutdinov, R.2
Hinton, G.3
-
34
-
-
84965161391
-
Weakly-supervised disentangling with recurrent transformations for 3d view synthesis
-
Jimei Yang, Scott Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly-supervised disentangling with recurrent transformations for 3d view synthesis. NIPS, 2015.
-
(2015)
NIPS
-
-
Yang, J.1
Reed, S.2
Yang, M.-H.3
Lee, H.4
|