-
1
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
2
-
-
84898798806
-
Restoring an image taken through a window covered with dirt or rain
-
IEEE
-
David Eigen, Dilip Krishnan, and Rob Fergus, “Restoring an image taken through a window covered with dirt or rain,” in Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE, 2013, pp. 633–640.
-
(2013)
Computer Vision (ICCV), 2013 IEEE International Conference on
, pp. 633-640
-
-
Eigen, D.1
Krishnan, D.2
Fergus, R.3
-
3
-
-
0034202338
-
Separating style and content with bilinear models
-
Joshua B Tenenbaum and William T Freeman, “Separating style and content with bilinear models,” Neural computation, vol. 12, no. 6, pp. 1247–1283, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.6
, pp. 1247-1283
-
-
Tenenbaum, J.B.1
Freeman, W.T.2
-
4
-
-
14544274150
-
Bilinear sparse coding for invariant vision
-
David B Grimes and Rajesh PN Rao, “Bilinear sparse coding for invariant vision,” Neural computation, vol. 17, no. 1, pp. 47–73, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 47-73
-
-
Grimes, D.B.1
Rao, R.P.N.2
-
5
-
-
34548238604
-
Bilinear models of natural images
-
International Society for Optics and Photonics
-
Bruno A Olshausen, Charles Cadieu, Jack Culpepper, and David K Warland, “Bilinear models of natural images,” in Electronic Imaging 2007. International Society for Optics and Photonics, 2007, pp. 649206–649206.
-
(2007)
Electronic Imaging 2007
, pp. 649206
-
-
Olshausen, B.A.1
Cadieu, C.2
Culpepper, J.3
Warland, D.K.4
-
6
-
-
79959347463
-
Transforming auto-encoders
-
Springer
-
Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang, “Transforming auto-encoders,” in Artificial Neural Networks and Machine Learning–ICANN 2011, pp. 44–51. Springer, 2011.
-
(2011)
Artificial Neural Networks and Machine Learning–ICANN 2011
, pp. 44-51
-
-
Hinton, G.E.1
Krizhevsky, A.2
Wang, S.D.3
-
7
-
-
77953520240
-
Learning to represent spatial transformations with factored higher-order boltzmann machines
-
Roland Memisevic and Geoffrey E Hinton, “Learning to represent spatial transformations with factored higher-order boltzmann machines,” Neural Computation, vol. 22, no. 6, pp. 1473–1492, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.6
, pp. 1473-1492
-
-
Memisevic, R.1
Hinton, G.E.2
-
8
-
-
70349705656
-
A structured model of video reproduces primary visual cortical organisation
-
Pietro Berkes, Richard E Turner, and Maneesh Sahani, “A structured model of video reproduces primary visual cortical organisation,” PLoS computational biology, vol. 5, no. 9, pp. e1000495, 2009.
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.9
-
-
Berkes, P.1
Turner, R.E.2
Sahani, M.3
-
9
-
-
84861163812
-
Learning intermediate-level representations of form and motion from natural movies
-
Charles F Cadieu and Bruno A Olshausen, “Learning intermediate-level representations of form and motion from natural movies,” Neural computation, vol. 24, no. 4, pp. 827–866, 2012.
-
(2012)
Neural Computation
, vol.24
, Issue.4
, pp. 827-866
-
-
Cadieu, C.F.1
Olshausen, B.A.2
-
10
-
-
84919832734
-
Learning to disentangle factors of variation with manifold interaction
-
ACM
-
Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee, “Learning to disentangle factors of variation with manifold interaction,” in Proceedings of The 31st International Conference on Machine Learning. ACM, 2014, p. 14311439.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning
, pp. 14311439
-
-
Reed, S.1
Sohn, K.2
Zhang, Y.3
Lee, H.4
-
12
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling, “Semi-supervised learning with deep generative models,” in Advances in Neural Information Processing Systems, 2014, pp. 3581–3589.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
13
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio, “Contractive auto-encoders: Explicit invariance during feature extraction,” in Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 833–840.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
14
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol, “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion,” The Journal of Machine Learning Research, vol. 11, pp. 3371–3408, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
15
-
-
84890478042
-
Building high-level features using large scale unsupervised learning
-
IEEE
-
Quoc V Le, “Building high-level features using large scale unsupervised learning,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp. 8595–8598.
-
(2013)
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
, pp. 8595-8598
-
-
Le, Q.V.1
-
16
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle, “Greedy layer-wise training of deep networks,” Advances in neural information processing systems, vol. 19, pp. 153, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
17
-
-
84867843700
-
Disentangling factors of variation for facial expression recognition
-
Springer
-
Salah Rifai, Yoshua Bengio, Aaron Courville, Pascal Vincent, and Mehdi Mirza, “Disentangling factors of variation for facial expression recognition,” in Computer Vision–ECCV 2012, pp. 808–822. Springer, 2012.
-
(2012)
Computer Vision–ECCV 2012
, pp. 808-822
-
-
Rifai, S.1
Bengio, Y.2
Courville, A.3
Vincent, P.4
Mirza, M.5
-
19
-
-
84893401626
-
-
arXiv preprint
-
Ian J Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent Dumoulin, Mehdi Mirza, Razvan Pascanu, James Bergstra, Frédéric Bastien, and Yoshua Bengio, “Pylearn2: a machine learning research library,” arXiv preprint arXiv:1308.4214, 2013.
-
(2013)
Pylearn2: A Machine Learning Research Library
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Lamblin, P.3
Dumoulin, V.4
Mirza, M.5
Pascanu, R.6
Bergstra, J.7
Bastien, F.8
Bengio, Y.9
-
20
-
-
84937849144
-
Generative adversarial nets
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, 2014, pp. 2672–2680.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
22
-
-
84893710272
-
Maxout networks
-
ACM
-
Ian J Goodfellow, David Warde-farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio, “Maxout networks,” in Proceedings of the 30th International Conference on Machine Learning. ACM, 2013, pp. 1319–1327.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
23
-
-
84866707259
-
-
Tech. Rep., University of Toronto
-
J. Susskind, A. Anderson, and G. E. Hinton, “The toronto face database,” Tech. Rep., University of Toronto, 2010.
-
(2010)
The Toronto Face Database
-
-
Susskind, J.1
Anderson, A.2
Hinton, G.E.3
-
24
-
-
76449115179
-
Multi-pie
-
Ralph Gross, Iain Matthews, Jeffrey Cohn, Takeo Kanade, and Simon Baker, “Multi-pie,” Image and Vision Computing, vol. 28, no. 5, pp. 807–813, 2010.
-
(2010)
Image and Vision Computing
, vol.28
, Issue.5
, pp. 807-813
-
-
Gross, R.1
Matthews, I.2
Cohn, J.3
Kanade, T.4
Baker, S.5
-
25
-
-
84964983441
-
-
arXiv preprint
-
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, “Going deeper with convolutions,” arXiv preprint arXiv:1409.4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
26
-
-
84919904380
-
Fast large-scale optimization by unifying stochastic gradient and quasi-newton methods
-
Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli, “Fast large-scale optimization by unifying stochastic gradient and quasi-newton methods,” in Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 604–612.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning (ICML-14)
, pp. 604-612
-
-
Sohl-Dickstein, J.1
Poole, B.2
Ganguli, S.3
-
27
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
28
-
-
79959650504
-
Quickly generating representative samples from an rbm-derived process
-
Olivier Breuleux, Yoshua Bengio, and Pascal Vincent, “Quickly generating representative samples from an rbm-derived process,” Neural Computation, vol. 23, no. 8, pp. 2058–2073, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.8
, pp. 2058-2073
-
-
Breuleux, O.1
Bengio, Y.2
Vincent, P.3
-
29
-
-
84882266451
-
Better mixing via deep representations
-
Yoshua Bengio, Gregoire Mesnil, Yann Dauphin, and Salah Rifai, “Better mixing via deep representations,” in Proceedings of The 30th International Conference on Machine Learning, 2013, pp. 552–560.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 552-560
-
-
Bengio, Y.1
Mesnil, G.2
Dauphin, Y.3
Rifai, S.4
-
30
-
-
84919906761
-
Deep generative stochastic networks trainable by backprop
-
Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason Yosinski, “Deep generative stochastic networks trainable by backprop,” in Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 226–234.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning (ICML-14)
, pp. 226-234
-
-
Bengio, Y.1
Laufer, E.2
Alain, G.3
Yosinski, J.4
|