메뉴 건너뛰기




Volumn 4, Issue , 2014, Pages 3291-3299

Learning to disentangle factors of variation with manifold interaction

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 84919832734     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (175)

References (38)
  • 4
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R. Multitask learning. Machine Learning, 28(1): 41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 5
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • Coates, A. and Ng, A. Y. The importance of encoding versus training with sparse coding and vector quantization. In ICML, 2011.
    • (2011) ICML
    • Coates, A.1    Ng, A.Y.2
  • 6
    • 84879854573 scopus 로고    scopus 로고
    • A spike and slab restricted Boltzmann machine
    • Courville, A., Bergstra, I., and Bengio, Y. A spike and slab restricted Boltzmann machine. In AISTATS, 2011.
    • (2011) AISTATS
    • Courville, A.1    Bergstra, I.2    Bengio, Y.3
  • 10
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006.
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8): 1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E. and Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science, 313 (5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 14
    • 84866691616 scopus 로고    scopus 로고
    • Learning hierarchical representations for face verification with con- Volutional deep belief networks
    • Huang, G. B., Lee, H., and Learned-Miller, E. Learning hierarchical representations for face verification with con- volutional deep belief networks. In CVPR, 2012a.
    • (2012) CVPR
    • Huang, G.B.1    Lee, H.2    Learned-Miller, E.3
  • 16
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • Kavukcuoglu, K., Ranzato, M., Fergus, R., and LeCun, Y. Learning invariant features through topographic filter maps. In CVPR, 2009.
    • (2009) CVPR
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    LeCun, Y.4
  • 17
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted Boltzmann machines
    • Larochelle, H. and Bengio, Y. Classification using discriminative restricted Boltzmann machines. In ICML, 2008.
    • (2008) ICML
    • Larochelle, H.1    Bengio, Y.2
  • 18
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • Le, Q. V., Zou, W. Y., Yeung, S. Y. and Ng, A. Y. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011.
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 20
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • Lee, H., Ekanadham, C., and Ng, A. Y. Sparse deep belief net model for visual area V2. In NIPS. 2008.
    • (2008) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 21
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee, H., Grosse, R., Ranganath, R. and Ng, A. Y. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011.
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 22
    • 51949107638 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • Lowe, D. G. Object recognition from local scale-invariant features. In CVPR, 1999.
    • (1999) CVPR
    • Lowe, D.G.1
  • 23
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order Boltzmann machines
    • Memisevic, R. and Hinton, G. E. Learning to represent spatial transformations with factored higher-order Boltzmann machines. Neural Computation, 22(6): 1473- 1492, 2010.
    • (2010) Neural Computation , vol.22 , Issue.6 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 24
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • Ranzato, M., Huang, F. J., Boureau, Y. L., and LeCun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.J.2    Boureau, Y.L.3    LeCun, Y.4
  • 25
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • Ranzato, M., Susskind, J., Mnih, V., and Hinton, G. E. On deep generative models with applications to recognition. In CVPR, 2011.
    • (2011) CVPR
    • Ranzato, M.1    Susskind, J.2    Mnih, V.3    Hinton, G.E.4
  • 26
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: Explicit invariance during feature extraction
    • Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. Contractive auto-encoders: Explicit invariance during feature extraction. In ICML, 2011.
    • (2011) ICML
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 27
    • 84876218917 scopus 로고    scopus 로고
    • Disentangling factors of variation for facial expression recognition
    • Rifai, S., Bengio, Y., Courville, A., Vincent, P., and Mirza, M. Disentangling factors of variation for facial expression recognition. In ECCV, 2012.
    • (2012) ECCV
    • Rifai, S.1    Bengio, Y.2    Courville, A.3    Vincent, P.4    Mirza, M.5
  • 28
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T. and Saul, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science, 290 (5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 30
    • 84867120801 scopus 로고    scopus 로고
    • Learning invariant representations with local transformations
    • Sohn, K. and Lee, H. Learning invariant representations with local transformations. In ICML, 2012.
    • (2012) ICML
    • Sohn, K.1    Lee, H.2
  • 31
    • 84897565124 scopus 로고    scopus 로고
    • Learning and selecting features jointly with point-wise gated Boltzmann machines
    • Sohn, K., Zhou, G., Lee, C., and Lee, H. Learning and selecting features jointly with point-wise gated Boltzmann machines. In ICML, 2013.
    • (2013) ICML
    • Sohn, K.1    Zhou, G.2    Lee, C.3    Lee, H.4
  • 32
    • 84883148756 scopus 로고    scopus 로고
    • Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
    • Stoyanov, V., Ropson, A., and Eisner, J. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In AISTATS, 2011.
    • (2011) AISTATS
    • Stoyanov, V.1    Ropson, A.2    Eisner, J.3
  • 34
    • 80052885960 scopus 로고    scopus 로고
    • Modeling the joint density of two images under a variety of transformations
    • Susskind, J., Memisevic, R., Hinton, G. E., and Pollefeys, M. Modeling the joint density of two images under a variety of transformations. In CVPR, 2011.
    • (2011) CVPR
    • Susskind, J.1    Memisevic, R.2    Hinton, G.E.3    Pollefeys, M.4
  • 36
    • 0034202338 scopus 로고    scopus 로고
    • Separating style and content with bilinear models
    • Tenenbaum, J. B. and Freeman, W. T. Separating style and content with bilinear models. Neural Computation, 12 (6): 1247-1283, 2000.
    • (2000) Neural Computation , vol.12 , Issue.6 , pp. 1247-1283
    • Tenenbaum, J.B.1    Freeman, W.T.2
  • 37
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., De Silva, V., and Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 38
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • Tieleman, T. Training restricted Boltzmann machines using approximations to the likelihood gradient. In ICML, 2008.
    • (2008) ICML
    • Tieleman, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.