-
1
-
-
84973922850
-
Understanding deep features with computer-generated imagery
-
M. Aubry and B. C. Russell. Understanding deep features with computer-generated imagery. In ICCV, 2015.
-
(2015)
ICCV
-
-
Aubry, M.1
Russell, B.C.2
-
2
-
-
84911409986
-
Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models
-
M. Aubry, D. Maturana, A. A. Efros, B. Russell, and J. Sivic. Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models. In CVPR, 2014.
-
(2014)
CVPR
-
-
Aubry, M.1
Maturana, D.2
Efros, A.A.3
Russell, B.4
Sivic, J.5
-
3
-
-
85083951076
-
Adam: A method for stochastic optimization
-
J. Ba and D. Kingma. Adam: A method for stochastic optimization. sIn ICLR, 2015.
-
(2015)
ICLR
-
-
Ba, J.1
Kingma, D.2
-
5
-
-
85028639150
-
A morphable model for the synthesis of 3D faces
-
V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In SIGGRAPH, 1999.
-
(1999)
SIGGRAPH
-
-
Blanz, V.1
Vetter, T.2
-
8
-
-
84959184995
-
Learning to generate chairs with convolutional neural networks
-
A. Dosovitskiy, J. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Dosovitskiy, A.1
Springenberg, J.2
Brox, T.3
-
10
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
11
-
-
76449115179
-
Multi-PIE
-
May
-
R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-PIE. Image and Vision Computing, 28(5):807-813, May 2010.
-
(2010)
Image and Vision Computing
, vol.28
, Issue.5
, pp. 807-813
-
-
Gross, R.1
Matthews, I.2
Cohn, J.3
Kanade, T.4
Baker, S.5
-
13
-
-
84913555165
-
-
arXiv preprint arXiv:1408.5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
14
-
-
84905756739
-
3D object manipulation in a single photograph using stock 3D models
-
N. Kholgade, T. Simon, A. Efros, and Y. Sheikh. 3D object manipulation in a single photograph using stock 3D models. In SIGGRAPH, 2014.
-
(2014)
SIGGRAPH
-
-
Kholgade, N.1
Simon, T.2
Efros, A.3
Sheikh, Y.4
-
15
-
-
85083952489
-
Auto-encoding variational Bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
16
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
18
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
19
-
-
84937955008
-
Modeling deep temporal dependencies with recurrent "grammar cells"
-
V. Michalski, R. Memisevic, and K. Konda. Modeling deep temporal dependencies with recurrent "grammar cells". In NIPS, 2014.
-
(2014)
NIPS
-
-
Michalski, V.1
Memisevic, R.2
Konda, K.3
-
20
-
-
84904867557
-
Playing atari with deep reinforcement learning
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep Learning Workshop, 2013.
-
(2013)
NIPS Deep Learning Workshop
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Graves, A.4
Antonoglou, I.5
Wierstra, D.6
Riedmiller, M.7
-
21
-
-
84965178314
-
Action-conditional video prediction using deep networks in atari games
-
J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh. Action-conditional video prediction using deep networks in atari games. In NIPS, 2015.
-
(2015)
NIPS
-
-
Oh, J.1
Guo, X.2
Lee, H.3
Lewis, R.4
Singh, S.5
-
22
-
-
84919832734
-
Learning to disentangle factors of variation with manifold interaction
-
S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of variation with manifold interaction. In ICML, 2014.
-
(2014)
ICML
-
-
Reed, S.1
Sohn, K.2
Zhang, Y.3
Lee, H.4
-
23
-
-
0015231889
-
Mental rotation of three dimensional objects
-
R. N. Shepard and J. Metzler. Mental rotation of three dimensional objects. Science, 171(3972):701-703, 1971.
-
(1971)
Science
, vol.171
, Issue.3972
, pp. 701-703
-
-
Shepard, R.N.1
Metzler, J.2
-
24
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. 1In ICLR, 2015.
-
(2015)
1In ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
25
-
-
0034202338
-
Separating style and content with bilinear models
-
J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. Neural Computation, 12(6):1247-1283, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.6
, pp. 1247-1283
-
-
Tenenbaum, J.B.1
Freeman, W.T.2
-
29
-
-
84949740059
-
High-fidelity pose and expression normalization for face recognition in the wild
-
X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity pose and expression normalization for face recognition in the wild. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhu, X.1
Lei, Z.2
Yan, J.3
Yi, D.4
Li, S.Z.5
-
30
-
-
84937885357
-
Multi-view perceptron: A deep model for learning face identity and view representations
-
Z. Zhu, P. Luo, X. Wang, and X. Tang. Multi-view perceptron: a deep model for learning face identity and view representations. In NIPS, 2014.
-
(2014)
NIPS
-
-
Zhu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
|