메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1099-1107

Weakly-supervised disentangling with recurrent transformations for 3D view synthesis

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE;

EID: 84965161391     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (327)

References (30)
  • 1
    • 84973922850 scopus 로고    scopus 로고
    • Understanding deep features with computer-generated imagery
    • M. Aubry and B. C. Russell. Understanding deep features with computer-generated imagery. In ICCV, 2015.
    • (2015) ICCV
    • Aubry, M.1    Russell, B.C.2
  • 2
    • 84911409986 scopus 로고    scopus 로고
    • Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models
    • M. Aubry, D. Maturana, A. A. Efros, B. Russell, and J. Sivic. Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models. In CVPR, 2014.
    • (2014) CVPR
    • Aubry, M.1    Maturana, D.2    Efros, A.A.3    Russell, B.4    Sivic, J.5
  • 3
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • J. Ba and D. Kingma. Adam: A method for stochastic optimization. sIn ICLR, 2015.
    • (2015) ICLR
    • Ba, J.1    Kingma, D.2
  • 5
    • 85028639150 scopus 로고    scopus 로고
    • A morphable model for the synthesis of 3D faces
    • V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In SIGGRAPH, 1999.
    • (1999) SIGGRAPH
    • Blanz, V.1    Vetter, T.2
  • 6
    • 85083952152 scopus 로고    scopus 로고
    • Discovering hidden factors of variation in deep networks
    • B. Cheung, J. Livezey, A. Bansal, and B. Olshausen. Discovering hidden factors of variation in deep networks. In ICLR, 2015.
    • (2015) ICLR
    • Cheung, B.1    Livezey, J.2    Bansal, A.3    Olshausen, B.4
  • 8
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.2    Brox, T.3
  • 10
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • R. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 14
    • 84905756739 scopus 로고    scopus 로고
    • 3D object manipulation in a single photograph using stock 3D models
    • N. Kholgade, T. Simon, A. Efros, and Y. Sheikh. 3D object manipulation in a single photograph using stock 3D models. In SIGGRAPH, 2014.
    • (2014) SIGGRAPH
    • Kholgade, N.1    Simon, T.2    Efros, A.3    Sheikh, Y.4
  • 15
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 19
    • 84937955008 scopus 로고    scopus 로고
    • Modeling deep temporal dependencies with recurrent "grammar cells"
    • V. Michalski, R. Memisevic, and K. Konda. Modeling deep temporal dependencies with recurrent "grammar cells". In NIPS, 2014.
    • (2014) NIPS
    • Michalski, V.1    Memisevic, R.2    Konda, K.3
  • 21
    • 84965178314 scopus 로고    scopus 로고
    • Action-conditional video prediction using deep networks in atari games
    • J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh. Action-conditional video prediction using deep networks in atari games. In NIPS, 2015.
    • (2015) NIPS
    • Oh, J.1    Guo, X.2    Lee, H.3    Lewis, R.4    Singh, S.5
  • 22
    • 84919832734 scopus 로고    scopus 로고
    • Learning to disentangle factors of variation with manifold interaction
    • S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of variation with manifold interaction. In ICML, 2014.
    • (2014) ICML
    • Reed, S.1    Sohn, K.2    Zhang, Y.3    Lee, H.4
  • 23
    • 0015231889 scopus 로고
    • Mental rotation of three dimensional objects
    • R. N. Shepard and J. Metzler. Mental rotation of three dimensional objects. Science, 171(3972):701-703, 1971.
    • (1971) Science , vol.171 , Issue.3972 , pp. 701-703
    • Shepard, R.N.1    Metzler, J.2
  • 24
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. 1In ICLR, 2015.
    • (2015) 1In ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 25
    • 0034202338 scopus 로고    scopus 로고
    • Separating style and content with bilinear models
    • J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. Neural Computation, 12(6):1247-1283, 2000.
    • (2000) Neural Computation , vol.12 , Issue.6 , pp. 1247-1283
    • Tenenbaum, J.B.1    Freeman, W.T.2
  • 27
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, 2015.
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 29
    • 84949740059 scopus 로고    scopus 로고
    • High-fidelity pose and expression normalization for face recognition in the wild
    • X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity pose and expression normalization for face recognition in the wild. In CVPR, 2015.
    • (2015) CVPR
    • Zhu, X.1    Lei, Z.2    Yan, J.3    Yi, D.4    Li, S.Z.5
  • 30
    • 84937885357 scopus 로고    scopus 로고
    • Multi-view perceptron: A deep model for learning face identity and view representations
    • Z. Zhu, P. Luo, X. Wang, and X. Tang. Multi-view perceptron: a deep model for learning face identity and view representations. In NIPS, 2014.
    • (2014) NIPS
    • Zhu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.