-
2
-
-
84969875442
-
-
Preprint
-
H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand. Domain-adversarial neural networks. In Preprint, http://arxiv.org/abs/1412.4446, 2014.
-
(2014)
Domain-adversarial Neural Networks
-
-
Ajakan, H.1
Germain, P.2
Larochelle, H.3
Laviolette, F.4
Marchand, M.5
-
3
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011.
-
(2011)
TPAMI
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
4
-
-
84897573740
-
A theory of learning from different domains
-
S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning from different domains. Machine learning, 79(1-2):151-175, 2010.
-
(2010)
Machine Learning
, vol.79
, Issue.1-2
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
5
-
-
84959206735
-
Beyond the shortest path: Unsupervised domain adaptation by sampling subspaces along the spline flow
-
R. Caseiro, J. F. Henriques, P. Martins, and J. Batist. Beyond the shortest path: Unsupervised Domain Adaptation by Sampling Subspaces Along the Spline Flow. In CVPR, 2015.
-
(2015)
CVPR
-
-
Caseiro, R.1
Henriques, J.F.2
Martins, P.3
Batist, J.4
-
6
-
-
84937943470
-
Depth map prediction from a single image using a multi-scale deep network
-
D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In NIPS, pages 2366-2374, 2014.
-
(2014)
NIPS
, pp. 2366-2374
-
-
Eigen, D.1
Puhrsch, C.2
Fergus, R.3
-
7
-
-
85041894612
-
Unsupervised domain adaptation by backpropagation
-
Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, pages 513-520, 2015.
-
(2015)
ICML
, pp. 513-520
-
-
Ganin, Y.1
Lempitsky, V.2
-
8
-
-
84979887690
-
Domain-adversarial training of neural networks
-
Y. Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR, 17(59):1-35, 2016.
-
(2016)
JMLR
, vol.17
, Issue.59
, pp. 1-35
-
-
Ganin, Y.1
-
9
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
IEEE
-
B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, pages 2066-2073. IEEE, 2012.
-
(2012)
CVPR
, pp. 2066-2073
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
-
10
-
-
84863396387
-
Domain adaptation for object recognition: An unsupervised approach
-
R. Gopalan, R. Li, and R. Chellappa. Domain Adaptation for Object Recognition: An Unsupervised Approach. In ICCV, 2011.
-
(2011)
ICCV
-
-
Gopalan, R.1
Li, R.2
Chellappa, R.3
-
11
-
-
84859477054
-
A kernel two-sample test
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A Kernel Two-Sample Test. JMLR, pages 723-773, 2012.
-
(2012)
JMLR
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
12
-
-
84890382488
-
Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes
-
S. Hinterstoisser et al. Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In ACCV, 2012.
-
(2012)
ACCV
-
-
Hinterstoisser, S.1
-
13
-
-
67651236465
-
Metrics for 3d rotations: Comparison and analysis
-
D. Q. Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of Mathematical Imaging and Vision, 35(2):155-164, 2009.
-
(2009)
Journal of Mathematical Imaging and Vision
, vol.35
, Issue.2
, pp. 155-164
-
-
Huynh, D.Q.1
-
14
-
-
85162037528
-
Factorized latent spaces with structured sparsity
-
Y. Jia, M. Salzmann, and T. Darrell. Factorized latent spaces with structured sparsity. In NIPS, pages 982-990, 2010.
-
(2010)
NIPS
, pp. 982-990
-
-
Jia, Y.1
Salzmann, M.2
Darrell, T.3
-
15
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
16
-
-
84906493406
-
Microsoft coco: Common objects in context
-
Springer
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV 2014, pages 740-755. Springer, 2014.
-
(2014)
ECCV 2014
, pp. 740-755
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
17
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
M. Long and J. Wang. Learning transferable features with deep adaptation networks. ICML, 2015.
-
(2015)
ICML
-
-
Long, M.1
Wang, J.2
-
18
-
-
70049090062
-
Domain adaptation with multiple sources
-
Y. Mansour et al. Domain adaptation with multiple sources. In NIPS, 2009.
-
(2009)
NIPS
-
-
Mansour, Y.1
-
19
-
-
84890872483
-
-
B. Moiseev, A. Konev, A. Chigorin, and A. Konushin. Evaluation of Traffic Sign Recognition Methods Trained on Synthetically Generated Data, chapter ACIVS, pages 576-583. 2013.
-
(2013)
Evaluation of Traffic Sign Recognition Methods Trained on Synthetically Generated Data, Chapter ACIVS
, pp. 576-583
-
-
Moiseev, B.1
Konev, A.2
Chigorin, A.3
Konushin, A.4
-
20
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with unsupervised feature learning. In NIPS Workshops, 2011.
-
(2011)
NIPS Workshops
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
21
-
-
84871690913
-
Apriltag: A robust and flexible visual fiducial system
-
2011 IEEE International Conference on IEEE
-
E. Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 3400-3407. IEEE, 2011.
-
(2011)
Robotics and Automation (ICRA)
, pp. 3400-3407
-
-
Olson, E.1
-
22
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211-252, 2015.
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
-
23
-
-
80052906503
-
Adapting visual category models to new domains
-
Springer
-
K. Saenko et al. Adapting visual category models to new domains. In ECCV. Springer, 2010.
-
(2010)
ECCV
-
-
Saenko, K.1
-
24
-
-
84862294408
-
Factorized orthogonal latent spaces
-
M. Salzmann et al. Factorized orthogonal latent spaces. In AISTATS, pages 701-708, 2010.
-
(2010)
AISTATS
, pp. 701-708
-
-
Salzmann, M.1
-
25
-
-
84861783004
-
Man vs. Computer: Benchmarking Machine learning algorithms for traffic sign recognition
-
J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, 2012.
-
(2012)
Neural Networks
-
-
Stallkamp, J.1
Schlipsing, M.2
Salmen, J.3
Igel, C.4
-
26
-
-
84990048974
-
Return of frustratingly easy domain adaptation
-
B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In AAAI. 2016.
-
(2016)
AAAI
-
-
Sun, B.1
Feng, J.2
Saenko, K.3
-
27
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in deep learning. In ICML, pages 1139-1147, 2013.
-
(2013)
ICML
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
28
-
-
84973897613
-
Simultaneous deep transfer across domains and tasks
-
E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across domains and tasks. In CVPR, pages 4068-4076, 2015.
-
(2015)
CVPR
, pp. 4068-4076
-
-
Tzeng, E.1
Hoffman, J.2
Darrell, T.3
Saenko, K.4
-
29
-
-
84969568676
-
-
Preprint arXiv:1412.3474
-
E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion: Maximizing for domain invariance. Preprint arXiv:1412.3474, 2014.
-
(2014)
Deep Domain Confusion: Maximizing for Domain Invariance
-
-
Tzeng, E.1
Hoffman, J.2
Zhang, N.3
Saenko, K.4
Darrell, T.5
-
30
-
-
80053436350
-
Bayesian CCA via group sparsity
-
S. Virtanen, A. Klami, and S. Kaski. Bayesian CCA via group sparsity. In ICML, pages 457-464, 2011.
-
(2011)
ICML
, pp. 457-464
-
-
Virtanen, S.1
Klami, A.2
Kaski, S.3
-
31
-
-
84959233990
-
Learning descriptors for object recognition and 3d pose estimation
-
P. Wohlhart and V. Lepetit. Learning descriptors for object recognition and 3d pose estimation. In CVPR, pages 3109-3118, 2015.
-
(2015)
CVPR
, pp. 3109-3118
-
-
Wohlhart, P.1
Lepetit, V.2
|