메뉴 건너뛰기




Volumn , Issue , 2016, Pages 343-351

Domain separation networks

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; LEARNING SYSTEMS; MAPPING;

EID: 85018890883     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1643)

References (31)
  • 3
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011.
    • (2011) TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 5
    • 84959206735 scopus 로고    scopus 로고
    • Beyond the shortest path: Unsupervised domain adaptation by sampling subspaces along the spline flow
    • R. Caseiro, J. F. Henriques, P. Martins, and J. Batist. Beyond the shortest path: Unsupervised Domain Adaptation by Sampling Subspaces Along the Spline Flow. In CVPR, 2015.
    • (2015) CVPR
    • Caseiro, R.1    Henriques, J.F.2    Martins, P.3    Batist, J.4
  • 6
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In NIPS, pages 2366-2374, 2014.
    • (2014) NIPS , pp. 2366-2374
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 7
    • 85041894612 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by backpropagation
    • Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, pages 513-520, 2015.
    • (2015) ICML , pp. 513-520
    • Ganin, Y.1    Lempitsky, V.2
  • 8
    • 84979887690 scopus 로고    scopus 로고
    • Domain-adversarial training of neural networks
    • Y. Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR, 17(59):1-35, 2016.
    • (2016) JMLR , vol.17 , Issue.59 , pp. 1-35
    • Ganin, Y.1
  • 9
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • IEEE
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, pages 2066-2073. IEEE, 2012.
    • (2012) CVPR , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 10
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain Adaptation for Object Recognition: An Unsupervised Approach. In ICCV, 2011.
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 12
    • 84890382488 scopus 로고    scopus 로고
    • Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes
    • S. Hinterstoisser et al. Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In ACCV, 2012.
    • (2012) ACCV
    • Hinterstoisser, S.1
  • 13
    • 67651236465 scopus 로고    scopus 로고
    • Metrics for 3d rotations: Comparison and analysis
    • D. Q. Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of Mathematical Imaging and Vision, 35(2):155-164, 2009.
    • (2009) Journal of Mathematical Imaging and Vision , vol.35 , Issue.2 , pp. 155-164
    • Huynh, D.Q.1
  • 14
    • 85162037528 scopus 로고    scopus 로고
    • Factorized latent spaces with structured sparsity
    • Y. Jia, M. Salzmann, and T. Darrell. Factorized latent spaces with structured sparsity. In NIPS, pages 982-990, 2010.
    • (2010) NIPS , pp. 982-990
    • Jia, Y.1    Salzmann, M.2    Darrell, T.3
  • 15
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 17
    • 84969549144 scopus 로고    scopus 로고
    • Learning transferable features with deep adaptation networks
    • M. Long and J. Wang. Learning transferable features with deep adaptation networks. ICML, 2015.
    • (2015) ICML
    • Long, M.1    Wang, J.2
  • 18
    • 70049090062 scopus 로고    scopus 로고
    • Domain adaptation with multiple sources
    • Y. Mansour et al. Domain adaptation with multiple sources. In NIPS, 2009.
    • (2009) NIPS
    • Mansour, Y.1
  • 21
    • 84871690913 scopus 로고    scopus 로고
    • Apriltag: A robust and flexible visual fiducial system
    • 2011 IEEE International Conference on IEEE
    • E. Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 3400-3407. IEEE, 2011.
    • (2011) Robotics and Automation (ICRA) , pp. 3400-3407
    • Olson, E.1
  • 22
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211-252, 2015.
    • (2015) IJCV , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 23
    • 80052906503 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Springer
    • K. Saenko et al. Adapting visual category models to new domains. In ECCV. Springer, 2010.
    • (2010) ECCV
    • Saenko, K.1
  • 24
    • 84862294408 scopus 로고    scopus 로고
    • Factorized orthogonal latent spaces
    • M. Salzmann et al. Factorized orthogonal latent spaces. In AISTATS, pages 701-708, 2010.
    • (2010) AISTATS , pp. 701-708
    • Salzmann, M.1
  • 25
    • 84861783004 scopus 로고    scopus 로고
    • Man vs. Computer: Benchmarking Machine learning algorithms for traffic sign recognition
    • J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, 2012.
    • (2012) Neural Networks
    • Stallkamp, J.1    Schlipsing, M.2    Salmen, J.3    Igel, C.4
  • 26
    • 84990048974 scopus 로고    scopus 로고
    • Return of frustratingly easy domain adaptation
    • B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In AAAI. 2016.
    • (2016) AAAI
    • Sun, B.1    Feng, J.2    Saenko, K.3
  • 27
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in deep learning. In ICML, pages 1139-1147, 2013.
    • (2013) ICML , pp. 1139-1147
    • Sutskever, I.1    Martens, J.2    Dahl, G.3    Hinton, G.4
  • 28
    • 84973897613 scopus 로고    scopus 로고
    • Simultaneous deep transfer across domains and tasks
    • E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across domains and tasks. In CVPR, pages 4068-4076, 2015.
    • (2015) CVPR , pp. 4068-4076
    • Tzeng, E.1    Hoffman, J.2    Darrell, T.3    Saenko, K.4
  • 30
    • 80053436350 scopus 로고    scopus 로고
    • Bayesian CCA via group sparsity
    • S. Virtanen, A. Klami, and S. Kaski. Bayesian CCA via group sparsity. In ICML, pages 457-464, 2011.
    • (2011) ICML , pp. 457-464
    • Virtanen, S.1    Klami, A.2    Kaski, S.3
  • 31
    • 84959233990 scopus 로고    scopus 로고
    • Learning descriptors for object recognition and 3d pose estimation
    • P. Wohlhart and V. Lepetit. Learning descriptors for object recognition and 3d pose estimation. In CVPR, pages 3109-3118, 2015.
    • (2015) CVPR , pp. 3109-3118
    • Wohlhart, P.1    Lepetit, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.