메뉴 건너뛰기




Volumn 70, Issue 3, 2014, Pages 185-202

Domain adaptation-can quantity compensate for quality?

Author keywords

Domain adaptation; Machine learning; Sample complexity

Indexed keywords


EID: 84899445570     PISSN: 10122443     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10472-013-9371-9     Document Type: Article
Times cited : (55)

References (14)
  • 1
    • 84867893533 scopus 로고    scopus 로고
    • On the hardness of domain adaptation and the utility of unlabeled target samples
    • Ben-David, S., and Urner, R.: On the hardness of domain adaptation and the utility of unlabeled target samples. In: ALT, pp. 139-153 (2012).
    • (2012) In: ALT , pp. 139-153
    • Ben-David, S.1    Urner, R.2
  • 2
    • 84864049234 scopus 로고    scopus 로고
    • Analysis of representations for domain adaptation
    • Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NIPS, pp. 137-144 (2006).
    • (2006) In: NIPS , pp. 137-144
    • Ben-David, S.1    Blitzer, J.2    Crammer, K.3    Pereira, F.4
  • 3
    • 85162073649 scopus 로고    scopus 로고
    • Learning bounds for importance weighting
    • In: Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.)
    • Cortes, C., Mansour, Y., Mohri, M.: Learning bounds for importance weighting. In: Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 442-450 (2010).
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 442-450
    • Cortes, C.1    Mansour, Y.2    Mohri, M.3
  • 5
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • Gong, B., Shi, Y., Sha, F., Grauman, K: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp. 2066-2073 (2012).
    • (2012) In: CVPR , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 7
    • 34249080889 scopus 로고    scopus 로고
    • Correcting sample selection bias by unlabeled data
    • Cambridge: MIT Press
    • Huang, J., Gretton, A., Schölkopf, B., Smola, A. J., Borgwardt, K. M.: Correcting sample selection bias by unlabeled data. In: NIPS. MIT Press, Cambridge (2007).
    • (2007) Nips
    • Huang, J.1    Gretton, A.2    Schölkopf, B.3    Smola, A.J.4    Borgwardt, K.M.5
  • 8
    • 85123650840 scopus 로고    scopus 로고
    • Detecting change in data streams
    • Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: VLDB, pp. 180-191 (2004).
    • (2004) In: VLDB , pp. 180-191
    • Kifer, D.1    Ben-David, S.2    Gehrke, J.3
  • 9
    • 84898072330 scopus 로고    scopus 로고
    • Domain adaptation: Learning bounds and algorithms
    • Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds and algorithms. In: COLT (2009).
    • (2009) In: COLT
    • Mansour, Y.1    Mohri, M.2    Rostamizadeh, A.3
  • 11
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines
    • Steinwart, I., Scovel, C.: Fast rates for support vector machines. Ann. Statist. 35(2), 575-607 (2007).
    • (2007) Ann. Statist. , vol.35 , Issue.2 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.