-
2
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. T-PAMI, 33:898-916, 2011.
-
(2011)
T-PAMI
, vol.33
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
3
-
-
84969939978
-
Active nearest neighbors in changing environments
-
C. Berlind and R. Urner. Active nearest neighbors in changing environments. In ICML, 2015.
-
(2015)
ICML
-
-
Berlind, C.1
Urner, R.2
-
4
-
-
0010805362
-
Learning from labeled and unlabeled data using graph mincuts
-
A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In ICML, 2001.
-
(2001)
ICML
-
-
Blum, A.1
Chawla, S.2
-
5
-
-
4344598245
-
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
-
Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. T-PAMI, 26:1124-1137, 2004.
-
(2004)
T-PAMI
, vol.26
, pp. 1124-1137
-
-
Boykov, Y.1
Kolmogorov, V.2
-
6
-
-
84902256759
-
Dlid: Deep learning for domain adaptation by interpolating between domains
-
S. Chopra, S. Balakrishnan, and R. Gopalan. Dlid: Deep learning for domain adaptation by interpolating between domains. In ICML W, 2013.
-
(2013)
ICML W
-
-
Chopra, S.1
Balakrishnan, S.2
Gopalan, R.3
-
7
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
8
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, pages 2121-2159, 2011.
-
(2011)
JMLR
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
9
-
-
84898798531
-
Unsupervised visual domain adaptation using subspace alignment
-
B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In ICCV, 2013.
-
(2013)
ICCV
-
-
Fernando, B.1
Habrard, A.2
Sebban, M.3
Tuytelaars, T.4
-
11
-
-
84969802531
-
Unsupervised domain adaptation by backpropagation
-
Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, 2015.
-
(2015)
ICML
-
-
Ganin, Y.1
Lempitsky, V.S.2
-
12
-
-
84897476317
-
Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
-
B. Gong, K. Grauman, and F. Sha. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In ICML, 2013.
-
(2013)
ICML
-
-
Gong, B.1
Grauman, K.2
Sha, F.3
-
13
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012.
-
(2012)
CVPR
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
-
14
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR, 2014.
-
(2014)
CVPR
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
15
-
-
84919779752
-
Coconut: Co-classification with output space regularization
-
S. Khamis and C. Lampert. Coconut: Co-classification with output space regularization. In BMVC, 2014.
-
(2014)
BMVC
-
-
Khamis, S.1
Lampert, C.2
-
17
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
18
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86:2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
21
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with unsupervised feature learning. In NIPS W, 2011.
-
(2011)
NIPS W
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
23
-
-
51949106645
-
Self-taught learning: Transfer learning from unlabeled data
-
ACM
-
R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In ICML. ACM, 2007.
-
(2007)
ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
24
-
-
84899001511
-
Transfer learning in a transductive setting
-
M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In NIPS, 2013.
-
(2013)
NIPS
-
-
Rohrbach, M.1
Ebert, S.2
Schiele, B.3
-
25
-
-
78149318752
-
Adapting visual category models to new domains
-
Springer
-
K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, pages 213-226. Springer, 2010.
-
(2010)
ECCV
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
26
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
-
(2014)
CoRR
-
-
Simonyan, K.1
Zisserman, A.2
-
27
-
-
31844440904
-
Beyond the point cloud: From transductive to semi-supervised learning
-
V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-supervised learning. In ICML, 2005.
-
(2005)
ICML
-
-
Sindhwani, V.1
Niyogi, P.2
Belkin, M.3
-
28
-
-
84990048974
-
Return of frustratingly easy domain adaptation
-
B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In AAAI, 2016.
-
(2016)
AAAI
-
-
Sun, B.1
Feng, J.2
Saenko, K.3
-
29
-
-
84962005349
-
Subspace alignment for unsupervised domain adaptation
-
B. Sun and K. Saenko. Subspace alignment for unsupervised domain adaptation. In BMVC, 2015.
-
(2015)
BMVC
-
-
Sun, B.1
Saenko, K.2
-
30
-
-
84964983441
-
-
arXiv:1409.4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv:1409.4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
32
-
-
84898834991
-
Frustratingly easy NBNN domain adaptation
-
T. Tommasi and B. Caputo. Frustratingly easy NBNN domain adaptation. In ICCV, 2013.
-
(2013)
ICCV
-
-
Tommasi, T.1
Caputo, B.2
-
33
-
-
84969568676
-
-
arXiv:1412.3474
-
E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion: Maximizing for domain invariance. arXiv:1412.3474, 2014.
-
(2014)
Deep Domain Confusion: Maximizing for Domain Invariance
-
-
Tzeng, E.1
Hoffman, J.2
Zhang, N.3
Saenko, K.4
Darrell, T.5
-
34
-
-
84998524866
-
Accelerating t-sne using tree-based algorithms
-
L. van der maaten. Accelerating t-sne using tree-based algorithms. In JMLR, 2014.
-
(2014)
JMLR
-
-
Van Der Maaten, L.1
-
35
-
-
33749550361
-
Distance metric learning for large margin nearest neighbor classification
-
K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2006.
-
(2006)
NIPS
-
-
Weinberger, K.Q.1
Blitzer, J.2
Saul, L.K.3
-
37
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
X. Zhu, Z. Ghahramani, J. Lafferty, et al Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
-
(2003)
ICML
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|