메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2118-2126

Learning transferrable representations for unsupervised domain adaptation

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; OBJECT RECOGNITION;

EID: 85019197138     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (343)

References (37)
  • 2
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. T-PAMI, 33:898-916, 2011.
    • (2011) T-PAMI , vol.33 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 3
    • 84969939978 scopus 로고    scopus 로고
    • Active nearest neighbors in changing environments
    • C. Berlind and R. Urner. Active nearest neighbors in changing environments. In ICML, 2015.
    • (2015) ICML
    • Berlind, C.1    Urner, R.2
  • 4
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In ICML, 2001.
    • (2001) ICML
    • Blum, A.1    Chawla, S.2
  • 5
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. T-PAMI, 26:1124-1137, 2004.
    • (2004) T-PAMI , vol.26 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 6
    • 84902256759 scopus 로고    scopus 로고
    • Dlid: Deep learning for domain adaptation by interpolating between domains
    • S. Chopra, S. Balakrishnan, and R. Gopalan. Dlid: Deep learning for domain adaptation by interpolating between domains. In ICML W, 2013.
    • (2013) ICML W
    • Chopra, S.1    Balakrishnan, S.2    Gopalan, R.3
  • 8
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, pages 2121-2159, 2011.
    • (2011) JMLR , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 9
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In ICCV, 2013.
    • (2013) ICCV
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 11
    • 84969802531 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by backpropagation
    • Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, 2015.
    • (2015) ICML
    • Ganin, Y.1    Lempitsky, V.S.2
  • 12
    • 84897476317 scopus 로고    scopus 로고
    • Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
    • B. Gong, K. Grauman, and F. Sha. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In ICML, 2013.
    • (2013) ICML
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 13
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012.
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 15
    • 84919779752 scopus 로고    scopus 로고
    • Coconut: Co-classification with output space regularization
    • S. Khamis and C. Lampert. Coconut: Co-classification with output space regularization. In BMVC, 2014.
    • (2014) BMVC
    • Khamis, S.1    Lampert, C.2
  • 16
    • 85019238287 scopus 로고    scopus 로고
    • Domain adaptation for zero-shot learning
    • E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Domain adaptation for zero-shot learning. In ICCV, 2015.
    • (2015) ICCV
    • Kodirov, E.1    Xiang, T.2    Fu, Z.3    Gong, S.4
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
  • 21
    • 84865114495 scopus 로고    scopus 로고
    • Reading digits in natural images with unsupervised feature learning
    • Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with unsupervised feature learning. In NIPS W, 2011.
    • (2011) NIPS W
    • Netzer, Y.1    Wang, T.2    Coates, A.3    Bissacco, A.4    Wu, B.5    Ng, A.Y.6
  • 23
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • ACM
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer learning from unlabeled data. In ICML. ACM, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 24
    • 84899001511 scopus 로고    scopus 로고
    • Transfer learning in a transductive setting
    • M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In NIPS, 2013.
    • (2013) NIPS
    • Rohrbach, M.1    Ebert, S.2    Schiele, B.3
  • 25
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Springer
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, pages 213-226. Springer, 2010.
    • (2010) ECCV , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 26
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 27
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-supervised learning. In ICML, 2005.
    • (2005) ICML
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 28
    • 84990048974 scopus 로고    scopus 로고
    • Return of frustratingly easy domain adaptation
    • B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In AAAI, 2016.
    • (2016) AAAI
    • Sun, B.1    Feng, J.2    Saenko, K.3
  • 29
    • 84962005349 scopus 로고    scopus 로고
    • Subspace alignment for unsupervised domain adaptation
    • B. Sun and K. Saenko. Subspace alignment for unsupervised domain adaptation. In BMVC, 2015.
    • (2015) BMVC
    • Sun, B.1    Saenko, K.2
  • 32
    • 84898834991 scopus 로고    scopus 로고
    • Frustratingly easy NBNN domain adaptation
    • T. Tommasi and B. Caputo. Frustratingly easy NBNN domain adaptation. In ICCV, 2013.
    • (2013) ICCV
    • Tommasi, T.1    Caputo, B.2
  • 34
    • 84998524866 scopus 로고    scopus 로고
    • Accelerating t-sne using tree-based algorithms
    • L. van der maaten. Accelerating t-sne using tree-based algorithms. In JMLR, 2014.
    • (2014) JMLR
    • Van Der Maaten, L.1
  • 35
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2006.
    • (2006) NIPS
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3
  • 37
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, J. Lafferty, et al Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.