-
1
-
-
85047095484
-
DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks
-
Adhikari, B. et al. (2018) DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics, 34, 1466-1472.
-
(2018)
Bioinformatics
, vol.34
, pp. 1466-1472
-
-
Adhikari, B.1
-
3
-
-
85030645219
-
Improved protein contact predictions with the MetaPSICOV2 server in CASP12
-
Buchan, D. W. and Jones, D. T. (2017) Improved protein contact predictions with the MetaPSICOV2 server in CASP12. Proteins, 86, 78-83.
-
(2017)
Proteins
, vol.86
, pp. 78-83
-
-
Buchan, D.W.1
Jones, D.T.2
-
4
-
-
76749112068
-
Disentangling direct from indirect co-evolution of residues in protein alignments
-
Burger, L. and Van Nimwegen, E. (2010) Disentangling direct from indirect co-evolution of residues in protein alignments. PLoS Comput. Biol., 6, e1000633.
-
(2010)
PLoS Comput. Biol.
, vol.6
, pp. e1000633
-
-
Burger, L.1
Van Nimwegen, E.2
-
5
-
-
84905637666
-
Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences
-
Ekeberg, M. et al. (2014) Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences. J. Comput. Phys., 276, 341-356.
-
(2014)
J. Comput. Phys.
, vol.276
, pp. 341-356
-
-
Ekeberg, M.1
-
6
-
-
84872521100
-
Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models
-
Ekeberg, M. et al. (2013) Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E, 87, 012707.
-
(2013)
Phys. Rev. e
, vol.87
, pp. 012707
-
-
Ekeberg, M.1
-
7
-
-
84962166694
-
An overview of the estimation of large covariance and precision matrices
-
Fan, J. et al. (2016) An overview of the estimation of large covariance and precision matrices. Econom. J., 19, C1-C32.
-
(2016)
Econom. J.
, vol.19
, pp. C1-C32
-
-
Fan, J.1
-
8
-
-
84883771767
-
Network deconvolution as a general method to distinguish direct dependencies in networks
-
Feizi, S. et al. (2013) Network deconvolution as a general method to distinguish direct dependencies in networks. Nat. Biotechnol., 31, 726.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 726
-
-
Feizi, S.1
-
9
-
-
84891811692
-
SCOPe: Structural Classification of Proteins-extended, integrating SCOP and ASTRAL data and classification of new structures
-
Fox, N. K. et al. (2014) SCOPe: structural Classification of Proteins-extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res., 42, D304-D309.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D304-D309
-
-
Fox, N.K.1
-
10
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman, J. et al. (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441.
-
(2008)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
-
11
-
-
0028295169
-
Correlated mutations and residue contacts in proteins
-
Göbel, U. et al. (1994) Correlated mutations and residue contacts in proteins. Proteins, 18, 309-317.
-
(1994)
Proteins
, vol.18
, pp. 309-317
-
-
Göbel, U.1
-
12
-
-
85019233828
-
Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images
-
Golkov, V. et al. (2016) Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images. In: Advances in Neural Information Processing Systems. pp. 4222-4230.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 4222-4230
-
-
Golkov, V.1
-
13
-
-
85026374818
-
NeBcon: Protein contact map prediction using neural network training coupled with naive Bayes classifiers
-
He, B. et al. (2017) NeBcon: protein contact map prediction using neural network training coupled with naive Bayes classifiers. Bioinformatics, 33, 2296-2306.
-
(2017)
Bioinformatics
, vol.33
, pp. 2296-2306
-
-
He, B.1
-
15
-
-
84856090271
-
PSICOV: Precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments
-
Jones, D. T. et al. (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics, 28, 184-190.
-
(2012)
Bioinformatics
, vol.28
, pp. 184-190
-
-
Jones, D.T.1
-
16
-
-
85054088641
-
High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features
-
Jones, D. T. and Kandathil, S. M. (2018) High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics, 34, 3308-3315.
-
(2018)
Bioinformatics
, vol.34
, pp. 3308-3315
-
-
Jones, D.T.1
Kandathil, S.M.2
-
17
-
-
84929144039
-
MetaPSICOV: Combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins
-
Jones, D. T. et al. (2015) MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics, 31, 999-1006.
-
(2015)
Bioinformatics
, vol.31
, pp. 999-1006
-
-
Jones, D.T.1
-
18
-
-
84899072164
-
FreeContact: Fast and free software for protein contact prediction from residue co-evolution
-
Kajan, L. et al. (2014) FreeContact: fast and free software for protein contact prediction from residue co-evolution. BMC Bioinformatics, 15, 85.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 85
-
-
Kajan, L.1
-
19
-
-
84884603324
-
Assessing the utility of coevolution-based residue-residue contact predictions in a sequence-and structure-rich era
-
Kamisetty, H. et al. (2013) Assessing the utility of coevolution-based residue-residue contact predictions in a sequence-and structure-rich era. Proc. Natl. Acad. Sci. USA., 110, 15674-15679.
-
(2013)
Proc. Natl. Acad. Sci. USA.
, vol.110
, pp. 15674-15679
-
-
Kamisetty, H.1
-
21
-
-
0036721218
-
Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations
-
Kass, I. and Horovitz, A. (2002) Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins, 48, 611-617.
-
(2002)
Proteins
, vol.48
, pp. 611-617
-
-
Kass, I.1
Horovitz, A.2
-
22
-
-
0036721218
-
Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations
-
Kass, I. and Horovitz, A. (2002) Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins, 48, 611-617.
-
(2002)
Proteins
, vol.48
, pp. 611-617
-
-
Kass, I.1
Horovitz, A.2
-
23
-
-
84955311378
-
Evaluation of free modeling targets in CASP11 and ROLL
-
Kinch, L. N. et al. (2016) Evaluation of free modeling targets in CASP11 and ROLL. Proteins, 84 (Suppl. 1), 51-66.
-
(2016)
Proteins
, vol.84
, pp. 51-66
-
-
Kinch, L.N.1
-
25
-
-
0025480891
-
Accelerate FPGA macros with one-hot approach
-
Knapp, S. K. (1990) Accelerate FPGA macros with one-hot approach. Electron. Des., 38, 71-78.
-
(1990)
Electron. Des.
, vol.38
, pp. 71-78
-
-
Knapp, S.K.1
-
26
-
-
85020126914
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A. et al. (2017) ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 84-90.
-
(2017)
Commun. ACM
, vol.60
, pp. 84-90
-
-
Krizhevsky, A.1
-
27
-
-
85019698520
-
Precision matrix estimation with ROPE
-
Kuismin, M. et al. (2017) Precision matrix estimation with ROPE. J. Comput. Graph. Stat., 26, 682-694.
-
(2017)
J. Comput. Graph. Stat.
, vol.26
, pp. 682-694
-
-
Kuismin, M.1
-
28
-
-
85038903223
-
Enhancing evolutionary couplings with deep convolutional neural networks
-
e3
-
Liu, Y. et al. (2018) Enhancing evolutionary couplings with deep convolutional neural networks. Cell Syst., 6, 65-74. e3.
-
(2018)
Cell Syst.
, vol.6
, pp. 65-74
-
-
Liu, Y.1
-
30
-
-
84947552221
-
Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning
-
Ma, J. et al. (2015) Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning. Bioinformatics, 31, 3506-3513.
-
(2015)
Bioinformatics
, vol.31
, pp. 3506-3513
-
-
Ma, J.1
-
31
-
-
27944458910
-
Using information theory to search for co-evolving residues in proteins
-
Martin, L. et al. (2005) Using information theory to search for co-evolving residues in proteins. Bioinformatics, 21, 4116-4124.
-
(2005)
Bioinformatics
, vol.21
, pp. 4116-4124
-
-
Martin, L.1
-
32
-
-
83755178457
-
Direct-coupling analysis of residue coevolution captures native contacts across many protein families
-
Morcos, F. et al. (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. USA., 108, E1293-E1301.
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. E1293-E1301
-
-
Morcos, F.1
-
34
-
-
77951455815
-
High-dimensional Ising model selection using '1-regularized logistic regression
-
Ravikumar, P. et al. (2010) High-dimensional Ising model selection using '1-regularized logistic regression. Ann. Stat., 38, 1287-1319.
-
(2010)
Ann. Stat.
, vol.38
, pp. 1287-1319
-
-
Ravikumar, P.1
-
35
-
-
84856489442
-
HHblits: Lightning-fast iterative protein sequence searching by HMM-HMMalignment
-
Remmert, M. et al. (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMMalignment. Nat. Methods, 9, 173.
-
(2012)
Nat. Methods
, vol.9
, pp. 173
-
-
Remmert, M.1
-
36
-
-
85041767953
-
Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age
-
Schaarschmidt, J. et al. (2018) Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age. Proteins, 86 (Suppl. 1), 51-66.
-
(2018)
Proteins
, vol.86
, pp. 51-66
-
-
Schaarschmidt, J.1
-
37
-
-
84911444768
-
CCMpred-fast and precise prediction of protein residue-residue contacts from correlated mutations
-
Seemayer, S. et al. (2014) CCMpred-fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics, 30, 3128-3130.
-
(2014)
Bioinformatics
, vol.30
, pp. 3128-3130
-
-
Seemayer, S.1
-
38
-
-
84922531769
-
Improving accuracy of protein contact prediction using balanced network deconvolution
-
Sun, H. P. et al. (2015) Improving accuracy of protein contact prediction using balanced network deconvolution. Proteins, 83, 485-496.
-
(2015)
Proteins
, vol.83
, pp. 485-496
-
-
Sun, H.P.1
-
39
-
-
84908099185
-
XSEDE: Accelerating scientific discovery
-
Towns, J. et al. (2014) XSEDE: accelerating scientific discovery. Comput. Sci. Eng., 16, 62-74.
-
(2014)
Comput. Sci. Eng.
, vol.16
, pp. 62-74
-
-
Towns, J.1
-
40
-
-
84974815616
-
Ridge estimation of inverse covariance matrices from high-dimensional data
-
van Wieringen, W. N. and Peeters, C. F. (2016) Ridge estimation of inverse covariance matrices from high-dimensional data. Comput. Stat. Data Anal., 103, 284-303.
-
(2016)
Comput. Stat. Data Anal.
, vol.103
, pp. 284-303
-
-
Van Wieringen, W.N.1
Peeters, C.F.2
-
41
-
-
85011370897
-
Accurate de Novo prediction of protein contact map by ultra-deep learning model
-
Wang, S. et al. (2017) Accurate De Novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, e1005324.
-
(2017)
PLoS Comput. Biol.
, vol.13
, pp. e1005324
-
-
Wang, S.1
-
42
-
-
58549114185
-
Identification of direct residue contacts in protein-protein interaction by message passing
-
Weigt, M. et al. (2009) Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. USA., 106, 67-72.
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 67-72
-
-
Weigt, M.1
-
43
-
-
85033794178
-
Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12
-
Zhang, C. et al. (2018) Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12. Proteins, 86, 136-151.
-
(2018)
Proteins
, vol.86
, pp. 136-151
-
-
Zhang, C.1
-
44
-
-
44949145113
-
Progress and challenges in protein structure prediction
-
Zhang, Y. (2008) Progress and challenges in protein structure prediction. Curr. Opin. Struct. Biol., 18, 342-348.
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, pp. 342-348
-
-
Zhang, Y.1
|