메뉴 건너뛰기




Volumn 35, Issue 22, 2019, Pages 4647-4655

ResPRE: High-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; COEVOLUTION; CONVOLUTIONAL NEURAL NETWORK; COVARIANCE; DATA ANALYSIS; LEARNING; NOISE; PREDICTION; PROTEIN FUNCTION; PROTEIN STRUCTURE; SEQUENCE ALIGNMENT; BIOLOGY; PROTEIN DATABASE;

EID: 85070761841     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btz291     Document Type: Article
Times cited : (129)

References (44)
  • 1
    • 85047095484 scopus 로고    scopus 로고
    • DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks
    • Adhikari, B. et al. (2018) DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics, 34, 1466-1472.
    • (2018) Bioinformatics , vol.34 , pp. 1466-1472
    • Adhikari, B.1
  • 3
    • 85030645219 scopus 로고    scopus 로고
    • Improved protein contact predictions with the MetaPSICOV2 server in CASP12
    • Buchan, D. W. and Jones, D. T. (2017) Improved protein contact predictions with the MetaPSICOV2 server in CASP12. Proteins, 86, 78-83.
    • (2017) Proteins , vol.86 , pp. 78-83
    • Buchan, D.W.1    Jones, D.T.2
  • 4
    • 76749112068 scopus 로고    scopus 로고
    • Disentangling direct from indirect co-evolution of residues in protein alignments
    • Burger, L. and Van Nimwegen, E. (2010) Disentangling direct from indirect co-evolution of residues in protein alignments. PLoS Comput. Biol., 6, e1000633.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000633
    • Burger, L.1    Van Nimwegen, E.2
  • 5
    • 84905637666 scopus 로고    scopus 로고
    • Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences
    • Ekeberg, M. et al. (2014) Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences. J. Comput. Phys., 276, 341-356.
    • (2014) J. Comput. Phys. , vol.276 , pp. 341-356
    • Ekeberg, M.1
  • 6
    • 84872521100 scopus 로고    scopus 로고
    • Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models
    • Ekeberg, M. et al. (2013) Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E, 87, 012707.
    • (2013) Phys. Rev. e , vol.87 , pp. 012707
    • Ekeberg, M.1
  • 7
    • 84962166694 scopus 로고    scopus 로고
    • An overview of the estimation of large covariance and precision matrices
    • Fan, J. et al. (2016) An overview of the estimation of large covariance and precision matrices. Econom. J., 19, C1-C32.
    • (2016) Econom. J. , vol.19 , pp. C1-C32
    • Fan, J.1
  • 8
    • 84883771767 scopus 로고    scopus 로고
    • Network deconvolution as a general method to distinguish direct dependencies in networks
    • Feizi, S. et al. (2013) Network deconvolution as a general method to distinguish direct dependencies in networks. Nat. Biotechnol., 31, 726.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 726
    • Feizi, S.1
  • 9
    • 84891811692 scopus 로고    scopus 로고
    • SCOPe: Structural Classification of Proteins-extended, integrating SCOP and ASTRAL data and classification of new structures
    • Fox, N. K. et al. (2014) SCOPe: structural Classification of Proteins-extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res., 42, D304-D309.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D304-D309
    • Fox, N.K.1
  • 10
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J. et al. (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1
  • 11
    • 0028295169 scopus 로고
    • Correlated mutations and residue contacts in proteins
    • Göbel, U. et al. (1994) Correlated mutations and residue contacts in proteins. Proteins, 18, 309-317.
    • (1994) Proteins , vol.18 , pp. 309-317
    • Göbel, U.1
  • 12
    • 85019233828 scopus 로고    scopus 로고
    • Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images
    • Golkov, V. et al. (2016) Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images. In: Advances in Neural Information Processing Systems. pp. 4222-4230.
    • (2016) Advances in Neural Information Processing Systems , pp. 4222-4230
    • Golkov, V.1
  • 13
    • 85026374818 scopus 로고    scopus 로고
    • NeBcon: Protein contact map prediction using neural network training coupled with naive Bayes classifiers
    • He, B. et al. (2017) NeBcon: protein contact map prediction using neural network training coupled with naive Bayes classifiers. Bioinformatics, 33, 2296-2306.
    • (2017) Bioinformatics , vol.33 , pp. 2296-2306
    • He, B.1
  • 15
    • 84856090271 scopus 로고    scopus 로고
    • PSICOV: Precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments
    • Jones, D. T. et al. (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics, 28, 184-190.
    • (2012) Bioinformatics , vol.28 , pp. 184-190
    • Jones, D.T.1
  • 16
    • 85054088641 scopus 로고    scopus 로고
    • High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features
    • Jones, D. T. and Kandathil, S. M. (2018) High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics, 34, 3308-3315.
    • (2018) Bioinformatics , vol.34 , pp. 3308-3315
    • Jones, D.T.1    Kandathil, S.M.2
  • 17
    • 84929144039 scopus 로고    scopus 로고
    • MetaPSICOV: Combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins
    • Jones, D. T. et al. (2015) MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics, 31, 999-1006.
    • (2015) Bioinformatics , vol.31 , pp. 999-1006
    • Jones, D.T.1
  • 18
    • 84899072164 scopus 로고    scopus 로고
    • FreeContact: Fast and free software for protein contact prediction from residue co-evolution
    • Kajan, L. et al. (2014) FreeContact: fast and free software for protein contact prediction from residue co-evolution. BMC Bioinformatics, 15, 85.
    • (2014) BMC Bioinformatics , vol.15 , pp. 85
    • Kajan, L.1
  • 19
    • 84884603324 scopus 로고    scopus 로고
    • Assessing the utility of coevolution-based residue-residue contact predictions in a sequence-and structure-rich era
    • Kamisetty, H. et al. (2013) Assessing the utility of coevolution-based residue-residue contact predictions in a sequence-and structure-rich era. Proc. Natl. Acad. Sci. USA., 110, 15674-15679.
    • (2013) Proc. Natl. Acad. Sci. USA. , vol.110 , pp. 15674-15679
    • Kamisetty, H.1
  • 21
    • 0036721218 scopus 로고    scopus 로고
    • Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations
    • Kass, I. and Horovitz, A. (2002) Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins, 48, 611-617.
    • (2002) Proteins , vol.48 , pp. 611-617
    • Kass, I.1    Horovitz, A.2
  • 22
    • 0036721218 scopus 로고    scopus 로고
    • Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations
    • Kass, I. and Horovitz, A. (2002) Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins, 48, 611-617.
    • (2002) Proteins , vol.48 , pp. 611-617
    • Kass, I.1    Horovitz, A.2
  • 23
    • 84955311378 scopus 로고    scopus 로고
    • Evaluation of free modeling targets in CASP11 and ROLL
    • Kinch, L. N. et al. (2016) Evaluation of free modeling targets in CASP11 and ROLL. Proteins, 84 (Suppl. 1), 51-66.
    • (2016) Proteins , vol.84 , pp. 51-66
    • Kinch, L.N.1
  • 25
    • 0025480891 scopus 로고
    • Accelerate FPGA macros with one-hot approach
    • Knapp, S. K. (1990) Accelerate FPGA macros with one-hot approach. Electron. Des., 38, 71-78.
    • (1990) Electron. Des. , vol.38 , pp. 71-78
    • Knapp, S.K.1
  • 26
    • 85020126914 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A. et al. (2017) ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 84-90.
    • (2017) Commun. ACM , vol.60 , pp. 84-90
    • Krizhevsky, A.1
  • 27
    • 85019698520 scopus 로고    scopus 로고
    • Precision matrix estimation with ROPE
    • Kuismin, M. et al. (2017) Precision matrix estimation with ROPE. J. Comput. Graph. Stat., 26, 682-694.
    • (2017) J. Comput. Graph. Stat. , vol.26 , pp. 682-694
    • Kuismin, M.1
  • 28
    • 85038903223 scopus 로고    scopus 로고
    • Enhancing evolutionary couplings with deep convolutional neural networks
    • e3
    • Liu, Y. et al. (2018) Enhancing evolutionary couplings with deep convolutional neural networks. Cell Syst., 6, 65-74. e3.
    • (2018) Cell Syst. , vol.6 , pp. 65-74
    • Liu, Y.1
  • 30
    • 84947552221 scopus 로고    scopus 로고
    • Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning
    • Ma, J. et al. (2015) Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning. Bioinformatics, 31, 3506-3513.
    • (2015) Bioinformatics , vol.31 , pp. 3506-3513
    • Ma, J.1
  • 31
    • 27944458910 scopus 로고    scopus 로고
    • Using information theory to search for co-evolving residues in proteins
    • Martin, L. et al. (2005) Using information theory to search for co-evolving residues in proteins. Bioinformatics, 21, 4116-4124.
    • (2005) Bioinformatics , vol.21 , pp. 4116-4124
    • Martin, L.1
  • 32
    • 83755178457 scopus 로고    scopus 로고
    • Direct-coupling analysis of residue coevolution captures native contacts across many protein families
    • Morcos, F. et al. (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. USA., 108, E1293-E1301.
    • (2011) Proc. Natl. Acad. Sci. USA. , vol.108 , pp. E1293-E1301
    • Morcos, F.1
  • 34
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional Ising model selection using '1-regularized logistic regression
    • Ravikumar, P. et al. (2010) High-dimensional Ising model selection using '1-regularized logistic regression. Ann. Stat., 38, 1287-1319.
    • (2010) Ann. Stat. , vol.38 , pp. 1287-1319
    • Ravikumar, P.1
  • 35
    • 84856489442 scopus 로고    scopus 로고
    • HHblits: Lightning-fast iterative protein sequence searching by HMM-HMMalignment
    • Remmert, M. et al. (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMMalignment. Nat. Methods, 9, 173.
    • (2012) Nat. Methods , vol.9 , pp. 173
    • Remmert, M.1
  • 36
    • 85041767953 scopus 로고    scopus 로고
    • Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age
    • Schaarschmidt, J. et al. (2018) Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age. Proteins, 86 (Suppl. 1), 51-66.
    • (2018) Proteins , vol.86 , pp. 51-66
    • Schaarschmidt, J.1
  • 37
    • 84911444768 scopus 로고    scopus 로고
    • CCMpred-fast and precise prediction of protein residue-residue contacts from correlated mutations
    • Seemayer, S. et al. (2014) CCMpred-fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics, 30, 3128-3130.
    • (2014) Bioinformatics , vol.30 , pp. 3128-3130
    • Seemayer, S.1
  • 38
    • 84922531769 scopus 로고    scopus 로고
    • Improving accuracy of protein contact prediction using balanced network deconvolution
    • Sun, H. P. et al. (2015) Improving accuracy of protein contact prediction using balanced network deconvolution. Proteins, 83, 485-496.
    • (2015) Proteins , vol.83 , pp. 485-496
    • Sun, H.P.1
  • 39
    • 84908099185 scopus 로고    scopus 로고
    • XSEDE: Accelerating scientific discovery
    • Towns, J. et al. (2014) XSEDE: accelerating scientific discovery. Comput. Sci. Eng., 16, 62-74.
    • (2014) Comput. Sci. Eng. , vol.16 , pp. 62-74
    • Towns, J.1
  • 40
    • 84974815616 scopus 로고    scopus 로고
    • Ridge estimation of inverse covariance matrices from high-dimensional data
    • van Wieringen, W. N. and Peeters, C. F. (2016) Ridge estimation of inverse covariance matrices from high-dimensional data. Comput. Stat. Data Anal., 103, 284-303.
    • (2016) Comput. Stat. Data Anal. , vol.103 , pp. 284-303
    • Van Wieringen, W.N.1    Peeters, C.F.2
  • 41
    • 85011370897 scopus 로고    scopus 로고
    • Accurate de Novo prediction of protein contact map by ultra-deep learning model
    • Wang, S. et al. (2017) Accurate De Novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, e1005324.
    • (2017) PLoS Comput. Biol. , vol.13 , pp. e1005324
    • Wang, S.1
  • 42
    • 58549114185 scopus 로고    scopus 로고
    • Identification of direct residue contacts in protein-protein interaction by message passing
    • Weigt, M. et al. (2009) Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. USA., 106, 67-72.
    • (2009) Proc. Natl. Acad. Sci. USA. , vol.106 , pp. 67-72
    • Weigt, M.1
  • 43
    • 85033794178 scopus 로고    scopus 로고
    • Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12
    • Zhang, C. et al. (2018) Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12. Proteins, 86, 136-151.
    • (2018) Proteins , vol.86 , pp. 136-151
    • Zhang, C.1
  • 44
    • 44949145113 scopus 로고    scopus 로고
    • Progress and challenges in protein structure prediction
    • Zhang, Y. (2008) Progress and challenges in protein structure prediction. Curr. Opin. Struct. Biol., 18, 342-348.
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 342-348
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.