메뉴 건너뛰기




Volumn 19, Issue 1, 2016, Pages C1-C32

An overview of the estimation of large covariance and precision matrices

Author keywords

Approximate factor model; Elliptical distribution; Graphical model; Heavy tailed; High dimensionality; Low rank matrix; Principal components; Rank based methods; Sparse matrix; Thresholding

Indexed keywords


EID: 84962166694     PISSN: 13684221     EISSN: 1368423X     Source Type: Journal    
DOI: 10.1111/ectj.12061     Document Type: Article
Times cited : (339)

References (104)
  • 1
    • 84877901545 scopus 로고    scopus 로고
    • Eigenvalue ratio test for the number of factors
    • Ahn, S. C. and A. R. Horenstein (2013). Eigenvalue ratio test for the number of factors. Econometrica 81, 1203-27.
    • (2013) Econometrica , vol.81 , pp. 1203-1227
    • Ahn, S.C.1    Horenstein, A.R.2
  • 2
    • 34548536094 scopus 로고    scopus 로고
    • The high-dimension, low-sample-size geometric representation holds under mild conditions
    • Ahn, J., J. Marron, K. M. Muller and Y-Y. Chi (2007). The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika 94, 760-6.
    • (2007) Biometrika , vol.94 , pp. 760-766
    • Ahn, J.1    Marron, J.2    Muller, K.M.3    Chi, Y.-Y.4
  • 4
    • 77958467466 scopus 로고    scopus 로고
    • Improved penalization for determining the number of factors in approximate factor models
    • Alessi, L., M. Barigozzi and M. Capasso (2010). Improved penalization for determining the number of factors in approximate factor models. Statistics and Probability Letters 80, 1806-13.
    • (2010) Statistics and Probability Letters , vol.80 , pp. 1806-1813
    • Alessi, L.1    Barigozzi, M.2    Capasso, M.3
  • 8
    • 0037277111 scopus 로고    scopus 로고
    • Inferential theory for factor models of large dimensions
    • Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71, 135-71.
    • (2003) Econometrica , vol.71 , pp. 135-171
    • Bai, J.1
  • 9
    • 84871198733 scopus 로고    scopus 로고
    • Statistical analysis of factor models of high dimension
    • Bai, J. and K. Li (2012). Statistical analysis of factor models of high dimension. Annals of Statistics 40, 436-65.
    • (2012) Annals of Statistics , vol.40 , pp. 436-465
    • Bai, J.1    Li, K.2
  • 10
    • 0036221554 scopus 로고    scopus 로고
    • Determining the number of factors in approximate factor models
    • Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-221.
    • (2002) Econometrica , vol.70 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 11
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee, O., L. El Ghaoui and A. d'Aspremont (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research 9, 485-516.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    d'Aspremont, A.3
  • 12
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • Bickel, P. and E. Levina (2008). Covariance regularization by thresholding. Annals of Statistics 36, 2577-604.
    • (2008) Annals of Statistics , vol.36 , pp. 2577-2604
    • Bickel, P.1    Levina, E.2
  • 13
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel, P. J., Y. Ritov and A. B. Tsybakov (2009). Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics 37, 1705-32.
    • (2009) Annals of Statistics , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 14
  • 15
    • 33646162895 scopus 로고    scopus 로고
    • Are more data always better for factor analysis
    • Boivin, J. and S. Ng (2006). Are more data always better for factor analysis? Journal of Econometrics 132, 169-94.
    • (2006) Journal of Econometrics , vol.132 , pp. 169-194
    • Boivin, J.1    Ng, S.2
  • 17
    • 79960133776 scopus 로고    scopus 로고
    • Adaptive thresholding for sparse covariance matrix estimation
    • Cai, T. and W. Liu (2011). Adaptive thresholding for sparse covariance matrix estimation. Journal of the American Statistical Association 106, 672-84.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 672-684
    • Cai, T.1    Liu, W.2
  • 18
    • 84861177057 scopus 로고    scopus 로고
    • Optimal rates of convergence for sparse covariance matrix estimation
    • Cai, T. and H. Zhou (2012). Optimal rates of convergence for sparse covariance matrix estimation. Annals of Statistics 40, 2389-420.
    • (2012) Annals of Statistics , vol.40 , pp. 2389-2420
    • Cai, T.1    Zhou, H.2
  • 20
    • 84891928504 scopus 로고    scopus 로고
    • Sparse PCA: optimal rates and adaptive estimation
    • Cai, T., Z. Ma and Y. Wu (2013). Sparse PCA: optimal rates and adaptive estimation. Annals of Statistics 41, 3074-110.
    • (2013) Annals of Statistics , vol.41 , pp. 3074-3110
    • Cai, T.1    Ma, Z.2    Wu, Y.3
  • 22
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candès, E. and T. Tao (2007). The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics 35, 2313-51.
    • (2007) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 25
    • 0000915180 scopus 로고
    • Arbitrage, factor structure, and mean-variance analysis on large asset markets
    • Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure, and mean-variance analysis on large asset markets. Econometrica 51, 1281-304.
    • (1983) Econometrica , vol.51 , pp. 1281-1304
    • Chamberlain, G.1    Rothschild, M.2
  • 26
    • 84859117004 scopus 로고    scopus 로고
    • Efficient estimation of factor models
    • Choi, I. (2012). Efficient estimation of factor models. Econometric Theory 28, 274-308.
    • (2012) Econometric Theory , vol.28 , pp. 274-308
    • Choi, I.1
  • 27
    • 35548970719 scopus 로고    scopus 로고
    • Semiparametric estimation of a characteristic-based factor model of stock returns
    • Connor, G. and L. Oliver (2007). Semiparametric estimation of a characteristic-based factor model of stock returns. Journal of Empirical Finance 14, 694-717.
    • (2007) Journal of Empirical Finance , vol.14 , pp. 694-717
    • Connor, G.1    Oliver, L.2
  • 28
    • 84858597462 scopus 로고    scopus 로고
    • Efficient semiparametric estimation of the Fama-French model and extensions
    • Connor, G., H. Matthias and L. Oliver (2012). Efficient semiparametric estimation of the Fama-French model and extensions. Econometrica 80, 713-54.
    • (2012) Econometrica , vol.80 , pp. 713-754
    • Connor, G.1    Matthias, H.2    Oliver, L.3
  • 31
    • 84871575482 scopus 로고    scopus 로고
    • A quasi-maximum likelihood approach for large, approximate dynamic factor models
    • Doz, C., D. Giannone and L. Reichlin (2012). A quasi-maximum likelihood approach for large, approximate dynamic factor models. Review of Economics and Statistics 94, 1014-24.
    • (2012) Review of Economics and Statistics , vol.94 , pp. 1014-1024
    • Doz, C.1    Giannone, D.2    Reichlin, L.3
  • 32
    • 78650151035 scopus 로고    scopus 로고
    • High-dimensionality effects in the markowitz problem and other quadratic programs with linear constraints: risk underestimation
    • El Karoui, N. (2010). High-dimensionality effects in the markowitz problem and other quadratic programs with linear constraints: risk underestimation. Annals of Statistics 38, 3487-566.
    • (2010) Annals of Statistics , vol.38 , pp. 3487-3566
    • El Karoui, N.1
  • 33
    • 84977737676 scopus 로고
    • The cross-section of expected stock returns
    • Fama, E. and K. French (1992). The cross-section of expected stock returns. Journal of Finance 47, 427-65.
    • (1992) Journal of Finance , vol.47 , pp. 427-465
    • Fama, E.1    French, K.2
  • 34
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-60.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 35
    • 84879554959 scopus 로고    scopus 로고
    • Statistical analysis of big data on pharmacogenomics
    • Fan, J. and H. Liu (2013). Statistical analysis of big data on pharmacogenomics. Advanced Drug Delivery Reviews 65, 987-1000.
    • (2013) Advanced Drug Delivery Reviews , vol.65 , pp. 987-1000
    • Fan, J.1    Liu, H.2
  • 36
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • Fan, J. and H. Peng (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics 32, 928-61.
    • (2004) Annals of Statistics , vol.32 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 37
    • 55349144848 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation using a factor model
    • Fan, J., Y. Fan and J. Lv (2008). High dimensional covariance matrix estimation using a factor model. Journal of Econometrics 147, 186-97.
    • (2008) Journal of Econometrics , vol.147 , pp. 186-197
    • Fan, J.1    Fan, Y.2    Lv, J.3
  • 38
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive LASSO and SCAD penalties
    • Fan, J., Y. Feng and Y. Wu (2009). Network exploration via the adaptive LASSO and SCAD penalties. Annals of Applied Statistics 3, 521-41.
    • (2009) Annals of Applied Statistics , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 39
    • 84906280924 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation in approximate factor models
    • Fan, J., Y. Liao and M. Mincheva (2011). High dimensional covariance matrix estimation in approximate factor models. Annals of Statistics 39, 3320-56.
    • (2011) Annals of Statistics , vol.39 , pp. 3320-3356
    • Fan, J.1    Liao, Y.2    Mincheva, M.3
  • 41
    • 84881566884 scopus 로고    scopus 로고
    • Large covariance estimation by thresholding principal orthogonal complements (with discussion)
    • Series B
    • Fan, J., Y. Liao and M. Mincheva (2013). Large covariance estimation by thresholding principal orthogonal complements (with discussion). Journal of the Royal Statistical Society, Series B 75, 603-80.
    • (2013) Journal of the Royal Statistical Society , vol.75 , pp. 603-680
    • Fan, J.1    Liao, Y.2    Mincheva, M.3
  • 42
    • 84919389078 scopus 로고    scopus 로고
    • Challenges of big data analysis
    • Fan, J., F. Han and H. Liu (2014). Challenges of big data analysis. National Science Review 1, 293-314.
    • (2014) National Science Review , vol.1 , pp. 293-314
    • Fan, J.1    Han, F.2    Liu, H.3
  • 44
    • 85007548382 scopus 로고    scopus 로고
    • Estimation of high-dimensional mean regression in absence of symmetry and light-tail assumptions
    • Forthcoming in, Series B.
    • Fan, J., Q. Li and Y. Wang (2016a). Estimation of high-dimensional mean regression in absence of symmetry and light-tail assumptions. Forthcoming in Journal of Royal Statistical Society, Series B.
    • (2016) Journal of Royal Statistical Society
    • Fan, J.1    Li, Q.2    Wang, Y.3
  • 45
    • 85013178156 scopus 로고    scopus 로고
    • Projected principal component analysis in factor models
    • Fan, J., Y. Liao and W. Wang (2016b). Projected principal component analysis in factor models. Annals of Statistics 44, 219-54.
    • (2016) Annals of Statistics , vol.44 , pp. 219-254
    • Fan, J.1    Liao, Y.2    Wang, W.3
  • 47
    • 0035634831 scopus 로고    scopus 로고
    • The generalized dynamic factor model: representation theory
    • Forni, M. and M. Lippi (2001). The generalized dynamic factor model: representation theory. Econometric Theory 17, 1113-41.
    • (2001) Econometric Theory , vol.17 , pp. 1113-1141
    • Forni, M.1    Lippi, M.2
  • 50
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical Lasso
    • Friedman, J., T. Hastie and R. Tibshirani (2008). Sparse inverse covariance estimation with the graphical Lasso. Biostatistics 9, 432-41.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 52
    • 34250778808 scopus 로고    scopus 로고
    • Determining the number of factors in the general dynamic factor model
    • Hallin, M. and R. Liška (2007). Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association 102, 603-17.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 603-617
    • Hallin, M.1    Liška, R.2
  • 53
    • 43249101438 scopus 로고    scopus 로고
    • CAPM and option pricing with elliptically contoured distributions
    • Hamada, M. and E. A. Valdez (2008). CAPM and option pricing with elliptically contoured distributions. Journal of Risk and Insurance 75, 387-409.
    • (2008) Journal of Risk and Insurance , vol.75 , pp. 387-409
    • Hamada, M.1    Valdez, E.A.2
  • 55
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics 29, 295-327.
    • (2001) Annals of Statistics , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 56
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • Jung, S. and J. Marron (2009). PCA consistency in high dimension, low sample size context. Annals of Statistics 37, 4104-30.
    • (2009) Annals of Statistics , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.2
  • 57
    • 78649393421 scopus 로고    scopus 로고
    • A testing procedure for determining the number of factors in approximate factor models with large datasets
    • Kapetanios, G. (2010). A testing procedure for determining the number of factors in approximate factor models with large datasets. Journal of Business and Economic Statistics 28, 397-409.
    • (2010) Journal of Business and Economic Statistics , vol.28 , pp. 397-409
    • Kapetanios, G.1
  • 58
    • 82655171609 scopus 로고    scopus 로고
    • Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion
    • Koltchinskii, V., K. Lounici and A. B. Tsybakov (2011). Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Annals of Statistics 39, 2302-29.
    • (2011) Annals of Statistics , vol.39 , pp. 2302-2329
    • Koltchinskii, V.1    Lounici, K.2    Tsybakov, A.B.3
  • 59
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • Lam, C. and J. Fan (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Annals of Statistics 37, 4254-78.
    • (2009) Annals of Statistics , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 60
    • 84872040116 scopus 로고    scopus 로고
    • Factor modeling for high-dimensional time series: inference for the number of factors
    • Lam, C. and Q. Yao (2012). Factor modeling for high-dimensional time series: inference for the number of factors. Annals of Statistics 40, 694-726.
    • (2012) Annals of Statistics , vol.40 , pp. 694-726
    • Lam, C.1    Yao, Q.2
  • 63
    • 0041841552 scopus 로고    scopus 로고
    • Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
    • Ledoit, O. and M. Wolf (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance 10, 603-21.
    • (2003) Journal of Empirical Finance , vol.10 , pp. 603-621
    • Ledoit, O.1    Wolf, M.2
  • 64
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • Ledoit, O. and M. Wolf (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 88, 365-411.
    • (2004) Journal of Multivariate Analysis , vol.88 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 67
    • 84875151494 scopus 로고    scopus 로고
    • High-dimensional semiparametric Gaussian copula graphical models
    • Liu, H., F. Han, M. Yuan, J. Lafferty and L. Wasserman (2012). High-dimensional semiparametric Gaussian copula graphical models. Annals of Statistics 40, 2293-326.
    • (2012) Annals of Statistics , vol.40 , pp. 2293-2326
    • Liu, H.1    Han, F.2    Yuan, M.3    Lafferty, J.4    Wasserman, L.5
  • 69
    • 84877623616 scopus 로고    scopus 로고
    • Sparse principal component analysis and iterative thresholding
    • Ma, Z. (2013). Sparse principal component analysis and iterative thresholding. Annals of Statistics 41, 772-801.
    • (2013) Annals of Statistics , vol.41 , pp. 772-801
    • Ma, Z.1
  • 70
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the Lasso
    • Meinshausen, N. and P. Bühlmann (2006). High dimensional graphs and variable selection with the Lasso. Annals of Statistics 34, 1436-62.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 72
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • Negahban, S. and M. J. Wainwright (2011). Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Annals of Statistics 39, 1069-97.
    • (2011) Annals of Statistics , vol.39 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.J.2
  • 73
    • 84860588430 scopus 로고    scopus 로고
    • Asymptotics of the principal components estimator of large factor models with weakly influential factors
    • Onatski, A. (2012). Asymptotics of the principal components estimator of large factor models with weakly influential factors. Journal of Econometrics 168, 244-58.
    • (2012) Journal of Econometrics , vol.168 , pp. 244-258
    • Onatski, A.1
  • 74
    • 0000557004 scopus 로고
    • On the class of elliptical distributions and their applications to the theory of portfolio choice
    • Owen, J. and R. Rabinovitch (1983). On the class of elliptical distributions and their applications to the theory of portfolio choice. Journal of Finance 38, 745-52.
    • (1983) Journal of Finance , vol.38 , pp. 745-752
    • Owen, J.1    Rabinovitch, R.2
  • 76
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica 17, 1617-42.
    • (2007) Statistica Sinica , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 78
    • 34247364678 scopus 로고    scopus 로고
    • A quadratically convergent Newton method for computing the nearest correlation matrix
    • Qi, H. and D. Sun (2006). A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM Journal on Matrix Analysis and Applications 28, 360-85.
    • (2006) SIAM Journal on Matrix Analysis and Applications , vol.28 , pp. 360-385
    • Qi, H.1    Sun, D.2
  • 79
    • 84965000519 scopus 로고    scopus 로고
    • Working Paper, Department of Operations Research and Financial Engineering, Princeton University (arXiv:1205.1210).
    • Rigollet, P. and A. Tsybakov (2012). Estimation of covariance matrices under sparsity constraints. Working Paper, Department of Operations Research and Financial Engineering, Princeton University (arXiv:1205.1210).
    • (2012) Estimation of covariance matrices under sparsity constraints.
    • Rigollet, P.1    Tsybakov, A.2
  • 83
    • 84869784137 scopus 로고    scopus 로고
    • Consistency of sparse PCA in high dimension, low sample size contexts
    • Shen, D., H. Shen and J. Marron (2013a). Consistency of sparse PCA in high dimension, low sample size contexts. Journal of Multivariate Analysis 115, 317-33.
    • (2013) Journal of Multivariate Analysis , vol.115 , pp. 317-333
    • Shen, D.1    Shen, H.2    Marron, J.3
  • 85
    • 84901768116 scopus 로고    scopus 로고
    • Generalized dynamic semi-parametric factor models for high-dimensional non-stationary time series
    • Song, S., W. K. Härdle and Y. Ritov (2014). Generalized dynamic semi-parametric factor models for high-dimensional non-stationary time series. Econometrics Journal 17, S101-S131.
    • (2014) Econometrics Journal , vol.17 , pp. S101-S131
    • Song, S.1    Härdle, W.K.2    Ritov, Y.3
  • 86
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictors
    • Stock, J. H. and M. W. Watson (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97, 1167-79.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 1167-1179
    • Stock, J.H.1    Watson, M.W.2
  • 92
    • 84938533326 scopus 로고    scopus 로고
    • Introduction to the non-asymptotic analysis of random matrices
    • In Y. C. Eldar and G. Kutyniok (Eds.), Cambridge: Cambridge University Press.
    • Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Y. C. Eldar and G. Kutyniok (Eds.), Compressed Sensing, Theory and Applications, 210-68. Cambridge: Cambridge University Press.
    • (2012) Compressed Sensing, Theory and Applications , pp. 210-268
    • Vershynin, R.1
  • 94
    • 77649317617 scopus 로고    scopus 로고
    • Vast volatility matrix estimation for high-frequency financial data
    • Wang, Y. and J. Zou (2010). Vast volatility matrix estimation for high-frequency financial data. Annals of Statistics 38, 943-78.
    • (2010) Annals of Statistics , vol.38 , pp. 943-978
    • Wang, Y.1    Zou, J.2
  • 97
    • 3843104546 scopus 로고    scopus 로고
    • Nonparametric estimation of large covariance matrices of longitudinal data
    • Wu, W. B. and M. Pourahmadi (2003). Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika 90, 831-44.
    • (2003) Biometrika , vol.90 , pp. 831-844
    • Wu, W.B.1    Pourahmadi, M.2
  • 98
    • 84873376907 scopus 로고    scopus 로고
    • Regularized rank-based estimation of high-dimensional nonparanormal graphical models
    • Xue, L. and H. Zou (2012). Regularized rank-based estimation of high-dimensional nonparanormal graphical models. Annals of Statistics 40, 2541-71.
    • (2012) Annals of Statistics , vol.40 , pp. 2541-2571
    • Xue, L.1    Zou, H.2
  • 99
    • 77956916683 scopus 로고    scopus 로고
    • High dimensional inverse covariance matrix estimation via linear programming
    • Yuan, M. (2010). High dimensional inverse covariance matrix estimation via linear programming. Journal of Machine Learning Research 11, 2261-86.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2261-2286
    • Yuan, M.1
  • 100
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan, M. and Y. Lin (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 101
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics 38, 894-942.
    • (2010) Annals of Statistics , vol.38 , pp. 894-942
    • Zhang, C.-H.1
  • 102
    • 84912119612 scopus 로고    scopus 로고
    • Calibrated precision matrix estimation for high-dimensional elliptical distributions
    • Zhao, T. and H. Liu (2014). Calibrated precision matrix estimation for high-dimensional elliptical distributions. IEEE Transactions on Information Theory 60, 7874-87.
    • (2014) IEEE Transactions on Information Theory , vol.60 , pp. 7874-7887
    • Zhao, T.1    Liu, H.2
  • 103


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.