메뉴 건너뛰기




Volumn 103, Issue , 2016, Pages 284-303

Ridge estimation of inverse covariance matrices from high-dimensional data

Author keywords

2 penalization; Graphical modeling; High dimensional precision matrix estimation; Multivariate normal; Precision matrix

Indexed keywords

CLUSTERING ALGORITHMS; COVARIANCE MATRIX; EIGENVALUES AND EIGENFUNCTIONS; GRAPHIC METHODS; INVERSE PROBLEMS;

EID: 84974815616     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2016.05.012     Document Type: Article
Times cited : (80)

References (45)
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B.N. Petrov, F. Csaki, Akademiai Kaido Budapest
    • H. Akaike Information theory and an extension of the maximum likelihood principle B.N. Petrov, F. Csaki, Second International Symposium on Information Theory 1973 Akademiai Kaido Budapest 267 281
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data J. Mach. Learn. Res. 9 2008 485 516
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 4
    • 33845678003 scopus 로고    scopus 로고
    • Regularization in statistics
    • P.J. Bickel, and B. Li Regularization in statistics TEST 15 2006 271 344
    • (2006) TEST , vol.15 , pp. 271-344
    • Bickel, P.J.1    Li, B.2
  • 5
    • 33646249113 scopus 로고    scopus 로고
    • Least-squares covariance matrix adjustment
    • S. Boyd, and L. Xiao Least-squares covariance matrix adjustment SIAM J. Matrix Anal. Appl. 27 2005 532 546
    • (2005) SIAM J. Matrix Anal. Appl. , vol.27 , pp. 532-546
    • Boyd, S.1    Xiao, L.2
  • 7
    • 0035185654 scopus 로고    scopus 로고
    • Shrinkage estimators for covariance matrices
    • M.J. Daniels, and R.E. Kass Shrinkage estimators for covariance matrices Biometrics 57 2001 1173 1184
    • (2001) Biometrics , vol.57 , pp. 1173-1184
    • Daniels, M.J.1    Kass, R.E.2
  • 10
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani Sparse inverse covariance estimation with the graphical lasso Biostatistics 9 2008 432 441
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge versus the lasso
    • W.J. Fu Penalized regressions: The bridge versus the lasso J. Comput. Graph. Statist. 7 1998 397 416
    • (1998) J. Comput. Graph. Statist. , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 15
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • D. Hanahan, and R.A. Weinberg The hallmarks of cancer Cell 100 2000 57 70
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 16
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A.E. Hoerl, and R. Kennard Ridge regression: Biased estimation for nonorthogonal problems Technometrics 12 1970 55 67
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 17
    • 0000988073 scopus 로고
    • New light on the correlation coefficient and its transforms
    • H. Hotelling New light on the correlation coefficient and its transforms J. R. Stat. Soc. Ser. B 15 1953 193 232
    • (1953) J. R. Stat. Soc. Ser. B , vol.15 , pp. 193-232
    • Hotelling, H.1
  • 18
    • 84877783090 scopus 로고    scopus 로고
    • A divide-and-conquer procedure for sparse inverse covariance estimation
    • F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger, NIPS 2012
    • C.J. Hsieh, I.S. Dhillon, P. Ravikumar, and A. Banerjee A divide-and-conquer procedure for sparse inverse covariance estimation F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger, Advances in Neural Information Processing Systems, Vol. 25 NIPS 2012 2012 2339 2347
    • (2012) Advances in Neural Information Processing Systems, Vol. 25 , pp. 2339-2347
    • Hsieh, C.J.1    Dhillon, I.S.2    Ravikumar, P.3    Banerjee, A.4
  • 19
    • 0001983508 scopus 로고
    • Analysis of covariance structures
    • K.G. Jöreskog Analysis of covariance structures Scand. J. Statist. 8 1981 65 92
    • (1981) Scand. J. Statist. , vol.8 , pp. 65-92
    • Jöreskog, K.G.1
  • 20
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • M. Kanehisa, and S. Goto KEGG: Kyoto encyclopedia of genes and genomes Nucleic Acids Res. 28 2000 27 30
    • (2000) Nucleic Acids Res. , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 21
    • 0041841552 scopus 로고    scopus 로고
    • Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
    • O. Ledoit, and M. Wolf Improved estimation of the covariance matrix of stock returns with an application to portfolio selection J. Empir. Finance 10 2003 603 621
    • (2003) J. Empir. Finance , vol.10 , pp. 603-621
    • Ledoit, O.1    Wolf, M.2
  • 22
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • O. Ledoit, and M. Wolf A well-conditioned estimator for large-dimensional covariance matrices J. Multivariate Anal. 88 2004 365 411
    • (2004) J. Multivariate Anal. , vol.88 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 23
    • 2942598047 scopus 로고    scopus 로고
    • All invariant moments of the Wishart distribution
    • G. Letac, and H. Massam All invariant moments of the Wishart distribution Scand. J. Statist. 31 2004 295 318
    • (2004) Scand. J. Statist. , vol.31 , pp. 295-318
    • Letac, G.1    Massam, H.2
  • 24
    • 79954608624 scopus 로고    scopus 로고
    • Shrinkage tuning parameter selection in precision matrices estimation
    • H. Lian Shrinkage tuning parameter selection in precision matrices estimation J. Statist. Plann. Inference 141 2011 2839 2848
    • (2011) J. Statist. Plann. Inference , vol.141 , pp. 2839-2848
    • Lian, H.1
  • 25
    • 77956030532 scopus 로고    scopus 로고
    • Adaptive first-order methods for general sparse inverse covariance selection
    • Z. Lu Adaptive first-order methods for general sparse inverse covariance selection SIAM J. Matrix Anal. Appl. 31 2010 2000 2016
    • (2010) SIAM J. Matrix Anal. Appl. , vol.31 , pp. 2000-2016
    • Lu, Z.1
  • 28
    • 82655175460 scopus 로고    scopus 로고
    • Covariance estimation: The GLM and regularization perspectives
    • M. Pourahmadi Covariance estimation: The GLM and regularization perspectives Statist. Sci. 26 2011 369 387
    • (2011) Statist. Sci. , vol.26 , pp. 369-387
    • Pourahmadi, M.1
  • 30
    • 84939512010 scopus 로고    scopus 로고
    • On the existence of the weighted bridge penalized Gaussian likelihood precision matrix estimator
    • A.J. Rothman, and L. Forzani On the existence of the weighted bridge penalized Gaussian likelihood precision matrix estimator Electron. J. Stat. 8 2014 2693 2700
    • (2014) Electron. J. Stat. , vol.8 , pp. 2693-2700
    • Rothman, A.J.1    Forzani, L.2
  • 31
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • art. 32
    • J. Schäfer, and K. Strimmer A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics Stat. Appl. Genet. Mol. Biol. 4 2005 art. 32
    • (2005) Stat. Appl. Genet. Mol. Biol. , vol.4
    • Schäfer, J.1    Strimmer, K.2
  • 32
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • J. Schäfer, and K. Strimmer An empirical Bayes approach to inferring large-scale gene association networks Bioinformatics 21 2005 754 764
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 36
    • 79952699255 scopus 로고    scopus 로고
    • P53: The most frequently altered gene in human cancers
    • B. Vogelstein, S. Sur, and C. Prives p53: The most frequently altered gene in human cancers Nat. Educ. 3 2010 6
    • (2010) Nat. Educ. , vol.3 , pp. 6
    • Vogelstein, B.1    Sur, S.2    Prives, C.3
  • 37
    • 84942193070 scopus 로고    scopus 로고
    • A computationally fast alternative to cross-validation in penalized Gaussian graphical models
    • arxiv:1309.621v2 [stat.ME]
    • I. Vujačić, A. Abbruzzo, and E.C. Wit A computationally fast alternative to cross-validation in penalized Gaussian graphical models J. Stat. Comput. Simul. 85 2015 3628 3640 arXiv:1309.621v2 [stat.ME]
    • (2015) J. Stat. Comput. Simul. , vol.85 , pp. 3628-3640
    • Vujačić, I.1    Abbruzzo, A.2    Wit, E.C.3
  • 38
    • 42349090022 scopus 로고    scopus 로고
    • Penalized normal likelihood and ridge regularization of correlation and covariance matrices
    • D. Warton Penalized normal likelihood and ridge regularization of correlation and covariance matrices J. Amer. Statist. Assoc. 103 2008 340 349
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 340-349
    • Warton, D.1
  • 39
    • 0001117305 scopus 로고
    • Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)
    • H. Weyl Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) Math. Ann. 71 1912 441 479
    • (1912) Math. Ann. , vol.71 , pp. 441-479
    • Weyl, H.1
  • 41
    • 83455181601 scopus 로고    scopus 로고
    • New insights and faster computations for the graphical lasso
    • D.M. Witten, J. Friedman, and N. Simon New insights and faster computations for the graphical lasso J. Comput. Graph. Statist. 20 2011 892 900
    • (2011) J. Comput. Graph. Statist. , vol.20 , pp. 892-900
    • Witten, D.M.1    Friedman, J.2    Simon, N.3
  • 42
    • 66849143711 scopus 로고    scopus 로고
    • Covariance-regularized regression and classification for high-dimensional problems
    • D.M. Witten, and R. Tibshirani Covariance-regularized regression and classification for high-dimensional problems J. R. Stat. Soc. Ser. B 71 2009 615 636
    • (2009) J. R. Stat. Soc. Ser. B , vol.71 , pp. 615-636
    • Witten, D.M.1    Tibshirani, R.2
  • 44
    • 64249118378 scopus 로고    scopus 로고
    • ℓ1 regularized estimates in Gaussian graphical models
    • ℓ1 regularized estimates in Gaussian graphical models J. Comput. Graph. Statist. 17 2008 809 826
    • (2008) J. Comput. Graph. Statist. , vol.17 , pp. 809-826
    • Yuan, M.1
  • 45
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • M. Yuan, and Y. Lin Model selection and estimation in the Gaussian graphical model Biometrika 94 2007 19 35
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.