-
1
-
-
77958452906
-
Vaccination strategies to promote mucosal antibody responses
-
Chen, K., and A. Cerutti. 2010. Vaccination strategies to promote mucosal antibody responses. Immunity 33: 479-491.
-
(2010)
Immunity
, vol.33
, pp. 479-491
-
-
Chen, K.1
Cerutti, A.2
-
2
-
-
84906794337
-
New advances in mucosal vaccination
-
Ranasinghe, C. 2014. New advances in mucosal vaccination. Immunol. Lett. 161: 204-206.
-
(2014)
Immunol. Lett.
, vol.161
, pp. 204-206
-
-
Ranasinghe, C.1
-
3
-
-
84864338756
-
Recent progress in mucosal vaccine development: Potential and limitations
-
Lycke, N. 2012. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12: 592-605.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 592-605
-
-
Lycke, N.1
-
4
-
-
14744303986
-
Mucosal adjuvants
-
Freytag, L. C., and J. D. Clements. 2005. Mucosal adjuvants. Vaccine 23: 1804-1813.
-
(2005)
Vaccine
, vol.23
, pp. 1804-1813
-
-
Freytag, L.C.1
Clements, J.D.2
-
5
-
-
84963625248
-
Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin
-
Kim, D., Y. G. Kim, S. U. Seo, D. J. Kim, N. Kamada, D. Prescott, M. Chamaillard, D. J. Philpott, P. Rosenstiel, N. Inohara, and G. Nuńẽz. 2016. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat. Med. 22: 524-530.
-
(2016)
Nat. Med.
, vol.22
, pp. 524-530
-
-
Kim, D.1
Kim, Y.G.2
Seo, S.U.3
Kim, D.J.4
Kamada, N.5
Prescott, D.6
Chamaillard, M.7
Philpott, D.J.8
Rosenstiel, P.9
Inohara, N.10
Nuńẽz, G.11
-
6
-
-
84982803350
-
-
Published erratum appears
-
[Published erratum appears in 2016 Nat. Med. 22: 961.]
-
(2016)
Nat. Med.
, vol.22
, pp. 961
-
-
-
7
-
-
83655193494
-
Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases
-
Macia, L., A. N. Thorburn, L. C. Binge, E. Marino, K. E. Rogers, K. M. Maslowski, A. T. Vieira, J. Kranich, and C. R. Mackay. 2012. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol. Rev. 245: 164-176.
-
(2012)
Immunol. Rev.
, vol.245
, pp. 164-176
-
-
MacIa, L.1
Thorburn, A.N.2
Binge, L.C.3
Marino, E.4
Rogers, K.E.5
Maslowski, K.M.6
Vieira, A.T.7
Kranich, J.8
MacKay, C.R.9
-
8
-
-
78650408264
-
Diet, gut microbiota and immune responses
-
Maslowski, K. M., and C. R. Mackay. 2011. Diet, gut microbiota and immune responses. Nat. Immunol. 12: 5-9.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 5-9
-
-
Maslowski, K.M.1
MacKay, C.R.2
-
9
-
-
84979220456
-
Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases
-
Sun, M., W. Wu, Z. Liu, and Y. Cong. 2017. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 52: 1-8.
-
(2017)
J. Gastroenterol.
, vol.52
, pp. 1-8
-
-
Sun, M.1
Wu, W.2
Liu, Z.3
Cong, Y.4
-
10
-
-
84924758166
-
Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation
-
Kim, C. H., J. Park, and M. Kim. 2014. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune Netw. 14: 277-288.
-
(2014)
Immune Netw.
, vol.14
, pp. 277-288
-
-
Kim, C.H.1
Park, J.2
Kim, M.3
-
11
-
-
84975168249
-
Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways
-
Tan, J., C. McKenzie, P. J. Vuillermin, G. Goverse, C. G. Vinuesa, R. E. Mebius, L. Macia, and C. R. Mackay. 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15: 2809-2824.
-
(2016)
Cell Rep.
, vol.15
, pp. 2809-2824
-
-
Tan, J.1
McKenzie, C.2
Vuillermin, P.J.3
Goverse, G.4
Vinuesa, C.G.5
Mebius, R.E.6
MacIa, L.7
MacKay, C.R.8
-
12
-
-
8244242523
-
Dietary fibers modulate indices of intestinal immune function in rats
-
Lim, B. O., K. Yamada, M. Nonaka, Y. Kuramoto, P. Hung, and M. Sugano. 1997. Dietary fibers modulate indices of intestinal immune function in rats. J. Nutr. 127: 663-667.
-
(1997)
J. Nutr.
, vol.127
, pp. 663-667
-
-
Lim, B.O.1
Yamada, K.2
Nonaka, M.3
Kuramoto, Y.4
Hung, P.5
Sugano, M.6
-
13
-
-
85020848232
-
Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43
-
Wu, W., M. Sun, F. Chen, A. T. Cao, H. Liu, Y. Zhao, X. Huang, Y. Xiao, S. Yao, Q. Zhao, et al. 2017. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10: 946-956.
-
(2017)
Mucosal Immunol.
, vol.10
, pp. 946-956
-
-
Wu, W.1
Sun, M.2
Chen, F.3
Cao, A.T.4
Liu, H.5
Zhao, Y.6
Huang, X.7
Xiao, Y.8
Yao, S.9
Zhao, Q.10
-
14
-
-
84979735744
-
Gut microbial metabolites fuel host antibody responses
-
Kim, M., Y. Qie, J. Park, and C. H. Kim. 2016. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20: 202-214.
-
(2016)
Cell Host Microbe
, vol.20
, pp. 202-214
-
-
Kim, M.1
Qie, Y.2
Park, J.3
Kim, C.H.4
-
15
-
-
78650645161
-
Generation of mucosal dendritic cells from bone marrow reveals a critical role of retinoic acid
-
Feng, T., Y. Cong, H. Qin, E. N. Benveniste, and C. O. Elson. 2010. Generation of mucosal dendritic cells from bone marrow reveals a critical role of retinoic acid. J. Immunol. 185: 5915-5925.
-
(2010)
J. Immunol.
, vol.185
, pp. 5915-5925
-
-
Feng, T.1
Cong, Y.2
Qin, H.3
Benveniste, E.N.4
Elson, C.O.5
-
16
-
-
70350666634
-
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
-
Maslowski, K. M., A. T. Vieira, A. Ng, J. Kranich, F. Sierro, D. Yu, H. C. Schilter, M. S. Rolph, F. Mackay, D. Artis, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282-1286.
-
(2009)
Nature
, vol.461
, pp. 1282-1286
-
-
Maslowski, K.M.1
Vieira, A.T.2
Ng, A.3
Kranich, J.4
Sierro, F.5
Yu, D.6
Schilter, H.C.7
Rolph, M.S.8
MacKay, F.9
Artis, D.10
-
17
-
-
85048026863
-
GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3
-
Zhao, Y., F. Chen, W. Wu, M. Sun, A. J. Bilotta, S. Yao, Y. Xiao, X. Huang, T. D. Eaves-Pyles, G. Golovko, et al. 2018. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 11: 752-762.
-
(2018)
Mucosal Immunol.
, vol.11
, pp. 752-762
-
-
Zhao, Y.1
Chen, F.2
Wu, W.3
Sun, M.4
Bilotta, A.J.5
Yao, S.6
Xiao, Y.7
Huang, X.8
Eaves-Pyles, T.D.9
Golovko, G.10
-
18
-
-
34248543774
-
Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1
-
Kallies, A., J. Hasbold, K. Fairfax, C. Pridans, D. Emslie, B. S. McKenzie, A. M. Lew, L. M. Corcoran, P. D. Hodgkin, D. M. Tarlinton, and S. L. Nutt. 2007. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 26: 555-566.
-
(2007)
Immunity
, vol.26
, pp. 555-566
-
-
Kallies, A.1
Hasbold, J.2
Fairfax, K.3
Pridans, C.4
Emslie, D.5
McKenzie, B.S.6
Lew, A.M.7
Corcoran, L.M.8
Hodgkin, P.D.9
Tarlinton, D.M.10
Nutt, S.L.11
-
19
-
-
33745182931
-
Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination
-
Klein, U., S. Casola, G. Cattoretti, Q. Shen, M. Lia, T. Mo, T. Ludwig, K. Rajewsky, and R. Dalla-Favera. 2006. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7: 773-782.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 773-782
-
-
Klein, U.1
Casola, S.2
Cattoretti, G.3
Shen, Q.4
Lia, M.5
Mo, T.6
Ludwig, T.7
Rajewsky, K.8
Dalla-Favera, R.9
-
20
-
-
70350452319
-
XBP1 governs late events in plasma cell differentiation and is not required for antigenspecific memory B cell development
-
Todd, D. J., L. J. McHeyzer-Williams, C. Kowal, A. H. Lee, B. T. Volpe, B. Diamond, M. G. McHeyzer-Williams, and L. H. Glimcher. 2009. XBP1 governs late events in plasma cell differentiation and is not required for antigenspecific memory B cell development. J. Exp. Med. 206: 2151-2159.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 2151-2159
-
-
Todd, D.J.1
McHeyzer-Williams, L.J.2
Kowal, C.3
Lee, A.H.4
Volpe, B.T.5
Diamond, B.6
McHeyzer-Williams, M.G.7
Glimcher, L.H.8
-
21
-
-
33747837100
-
BAFF, April and their receptors: Structure, function and signaling
-
Bossen, C., and P. Schneider. 2006. BAFF, APRIL and their receptors: structure, function and signaling. Semin. Immunol. 18: 263-275.
-
(2006)
Semin. Immunol.
, vol.18
, pp. 263-275
-
-
Bossen, C.1
Schneider, P.2
-
22
-
-
38349194826
-
Retinoic acid promotes mouse splenic B cell surface IgG expression and maturation stimulated by CD40 and IL-4
-
Chen, Q., and A. C. Ross. 2007. Retinoic acid promotes mouse splenic B cell surface IgG expression and maturation stimulated by CD40 and IL-4. Cell. Immunol. 249: 37-45.
-
(2007)
Cell. Immunol.
, vol.249
, pp. 37-45
-
-
Chen, Q.1
Ross, A.C.2
-
23
-
-
78049456523
-
The germinal center reaction
-
quiz 908-909
-
Gatto, D., and R. Brink. 2010. The germinal center reaction. J. Allergy Clin. Immunol. 126: 898-907, quiz 908-909.
-
(2010)
J. Allergy Clin. Immunol.
, vol.126
, pp. 898-907
-
-
Gatto, D.1
Brink, R.2
-
24
-
-
84901050860
-
Gut microbiota-generated metabolites in animal health and disease
-
Lee, W. J., and K. Hase. 2014. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10: 416-424.
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 416-424
-
-
Lee, W.J.1
Hase, K.2
-
25
-
-
67349250428
-
The gut microbiota shapes intestinal immune responses during health and disease
-
Round, J. L., and S. K. Mazmanian. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9: 313-323.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 313-323
-
-
Round, J.L.1
Mazmanian, S.K.2
-
26
-
-
70349456621
-
-
Published erratum appears
-
Published erratum appears in 2009 Nat. Rev. Immunol. 9: 600.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 600
-
-
-
27
-
-
84876913132
-
Role of the gut microbiota in immunity and inflammatory disease
-
Kamada, N., S. U. Seo, G. Y. Chen, and G. Nuńẽz. 2013. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13: 321-335.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 321-335
-
-
Kamada, N.1
Seo, S.U.2
Chen, G.Y.3
Nuńẽz, G.4
-
28
-
-
84908003512
-
TLR5- mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination
-
Oh, J. Z., R. Ravindran, B. Chassaing, F. A. Carvalho, M. S. Maddur, M. Bower, P. Hakimpour, K. P. Gill, H. I. Nakaya, F. Yarovinsky, et al. 2014. TLR5- mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41: 478-492.
-
(2014)
Immunity
, vol.41
, pp. 478-492
-
-
Oh, J.Z.1
Ravindran, R.2
Chassaing, B.3
Carvalho, F.A.4
Maddur, M.S.5
Bower, M.6
Hakimpour, P.7
Gill, K.P.8
Nakaya, H.I.9
Yarovinsky, F.10
-
29
-
-
84927695047
-
Influence of the microbiota on vaccine effectiveness
-
Valdez, Y., E. M. Brown, and B. B. Finlay. 2014. Influence of the microbiota on vaccine effectiveness. Trends Immunol. 35: 526-537.
-
(2014)
Trends Immunol.
, vol.35
, pp. 526-537
-
-
Valdez, Y.1
Brown, E.M.2
Finlay, B.B.3
-
30
-
-
84857444508
-
B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage
-
Kirkland, D., A. Benson, J. Mirpuri, R. Pifer, B. Hou, A. L. DeFranco, and F. Yarovinsky. 2012. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity 36: 228-238.
-
(2012)
Immunity
, vol.36
, pp. 228-238
-
-
Kirkland, D.1
Benson, A.2
Mirpuri, J.3
Pifer, R.4
Hou, B.5
DeFranco, A.L.6
Yarovinsky, F.7
-
31
-
-
84971201113
-
Gut microbiota, metabolites and host immunity
-
Rooks, M. G., and W. S. Garrett. 2016. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16: 341-352.
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 341-352
-
-
Rooks, M.G.1
Garrett, W.S.2
-
32
-
-
84893704050
-
Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
-
Trompette, A., E. S. Gollwitzer, K. Yadava, A. K. Sichelstiel, N. Sprenger, C. Ngom-Bru, C. Blanchard, T. Junt, L. P. Nicod, N. L. Harris, and B. J. Marsland. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166.
-
(2014)
Nat. Med.
, vol.20
, pp. 159-166
-
-
Trompette, A.1
Gollwitzer, E.S.2
Yadava, K.3
Sichelstiel, A.K.4
Sprenger, N.5
Ngom-Bru, C.6
Blanchard, C.7
Junt, T.8
Nicod, L.P.9
Harris, N.L.10
Marsland, B.J.11
-
33
-
-
84881550079
-
Butyricicoccus pullicaecorum in inflammatory bowel disease
-
Eeckhaut, V., K. Machiels, C. Perrier, C. Romero, S. Maes, B. Flahou, M. Steppe, F. Haesebrouck, B. Sas, R. Ducatelle, et al. 2013. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62: 1745-1752.
-
(2013)
Gut
, vol.62
, pp. 1745-1752
-
-
Eeckhaut, V.1
MacHiels, K.2
Perrier, C.3
Romero, C.4
Maes, S.5
Flahou, B.6
Steppe, M.7
Haesebrouck, F.8
Sas, B.9
Ducatelle, R.10
-
34
-
-
84893859801
-
The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
-
Chang, P. V., L. Hao, S. Offermanns, and R. Medzhitov. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 111: 2247-2252.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 2247-2252
-
-
Chang, P.V.1
Hao, L.2
Offermanns, S.3
Medzhitov, R.4
-
35
-
-
84926367699
-
Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome
-
Macia, L., J. Tan, A. T. Vieira, K. Leach, D. Stanley, S. Luong, M. Maruya, C. Ian McKenzie, A. Hijikata, C. Wong, et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6: 6734.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6734
-
-
MacIa, L.1
Tan, J.2
Vieira, A.T.3
Leach, K.4
Stanley, D.5
Luong, S.6
Maruya, M.7
Ian McKenzie, C.8
Hijikata, A.9
Wong, C.10
-
36
-
-
84922163095
-
Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway
-
Park, J., M. Kim, S. G. Kang, A. H. Jannasch, B. Cooper, J. Patterson, and C. H. Kim. 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8: 80-93.
-
(2015)
Mucosal Immunol.
, vol.8
, pp. 80-93
-
-
Park, J.1
Kim, M.2
Kang, S.G.3
Jannasch, A.H.4
Cooper, B.5
Patterson, J.6
Kim, C.H.7
-
37
-
-
84942106233
-
GPR43 - A prototypic metabolite sensor linking metabolic and inflammatory diseases
-
McKenzie, C. I., C. R. Mackay, and L. Macia. 2015. GPR43 - a prototypic metabolite sensor linking metabolic and inflammatory diseases. Trends Endocrinol. Metab. 26: 511-512.
-
(2015)
Trends Endocrinol. Metab.
, vol.26
, pp. 511-512
-
-
McKenzie, C.I.1
MacKay, C.R.2
MacIa, L.3
-
38
-
-
0033213958
-
Modulating dendritic cells to optimize mucosal immunization protocols
-
Williamson, E., G. M. Westrich, and J. L. Viney. 1999. Modulating dendritic cells to optimize mucosal immunization protocols. J. Immunol. 163: 3668-3675.
-
(1999)
J. Immunol.
, vol.163
, pp. 3668-3675
-
-
Williamson, E.1
Westrich, G.M.2
Viney, J.L.3
-
39
-
-
84874410778
-
Intestinal dendritic cells: Their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men
-
Mann, E. R., J. D. Landy, D. Bernardo, S. T. Peake, A. L. Hart, H. O. Al-Hassi, and S. C. Knight. 2013. Intestinal dendritic cells: their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men. Immunol. Lett. 150: 30-40.
-
(2013)
Immunol. Lett.
, vol.150
, pp. 30-40
-
-
Mann, E.R.1
Landy, J.D.2
Bernardo, D.3
Peake, S.T.4
Hart, A.L.5
Al-Hassi, H.O.6
Knight, S.C.7
-
40
-
-
84871261032
-
Butyrate increases IL-23 production by stimulated dendritic cells
-
Berndt, B. E., M. Zhang, S. Y. Owyang, T. S. Cole, T. W. Wang, J. Luther, N. A. Veniaminova, J. L. Merchant, C. C. Chen, G. B. Huffnagle, and J. Y. Kao. 2012. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303: G1384-G1392.
-
(2012)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.303
, pp. G1384-G1392
-
-
Berndt, B.E.1
Zhang, M.2
Owyang, S.Y.3
Cole, T.S.4
Wang, T.W.5
Luther, J.6
Veniaminova, N.A.7
Merchant, J.L.8
Chen, C.C.9
Huffnagle, G.B.10
Kao, J.Y.11
-
41
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
Singh, N., A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40: 128-139.
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
Brady, E.4
Padia, R.5
Shi, H.6
Thangaraju, M.7
Prasad, P.D.8
Manicassamy, S.9
Munn, D.H.10
-
42
-
-
0033428703
-
Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations
-
Mackay, F., S. A. Woodcock, P. Lawton, C. Ambrose, M. Baetscher, P. Schneider, J. Tschopp, and J. L. Browning. 1999. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190: 1697-1710.
-
(1999)
J. Exp. Med.
, vol.190
, pp. 1697-1710
-
-
MacKay, F.1
Woodcock, S.A.2
Lawton, P.3
Ambrose, C.4
Baetscher, M.5
Schneider, P.6
Tschopp, J.7
Browning, J.L.8
-
43
-
-
0036732753
-
DCs induce CD40-independent immunoglobulin class switching through BLyS and April
-
Litinskiy, M. B., B. Nardelli, D. M. Hilbert, B. He, A. Schaffer, P. Casali, and A. Cerutti. 2002. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3: 822-829.
-
(2002)
Nat. Immunol.
, vol.3
, pp. 822-829
-
-
Litinskiy, M.B.1
Nardelli, B.2
Hilbert, D.M.3
He, B.4
Schaffer, A.5
Casali, P.6
Cerutti, A.7
-
44
-
-
0344258320
-
Toward a role of dendritic cells in the germinal center reaction: Triggering of B cell proliferation and isotype switching
-
Dubois, B., C. Barthélémy, I. Durand, Y. J. Liu, C. Caux, and F. Brière. 1999. Toward a role of dendritic cells in the germinal center reaction: triggering of B cell proliferation and isotype switching. J. Immunol. 162: 3428-3436.
-
(1999)
J. Immunol.
, vol.162
, pp. 3428-3436
-
-
Dubois, B.1
Barthélémy, C.2
Durand, I.3
Liu, Y.J.4
Caux, C.5
Brière, F.6
-
45
-
-
70349671793
-
Toll-like receptor 3 ligand and retinoic acid enhance germinal center formation and increase the tetanus toxoid vaccine response
-
Ma, Y., and A. C. Ross. 2009. Toll-like receptor 3 ligand and retinoic acid enhance germinal center formation and increase the tetanus toxoid vaccine response. Clin. Vaccine Immunol. 16: 1476-1484.
-
(2009)
Clin. Vaccine Immunol.
, vol.16
, pp. 1476-1484
-
-
Ma, Y.1
Ross, A.C.2
-
46
-
-
0038446862
-
Cutting edge: Germinal centers formed in the absence of B cell-activating factor belonging to the TNF family exhibit impaired maturation and function
-
Vora, K. A., L. C. Wang, S. P. Rao, Z. Y. Liu, G. R. Majeau, A. H. Cutler, P. S. Hochman, M. L. Scott, and S. L. Kalled. 2003. Cutting edge: germinal centers formed in the absence of B cell-activating factor belonging to the TNF family exhibit impaired maturation and function. J. Immunol. 171: 547-551.
-
(2003)
J. Immunol.
, vol.171
, pp. 547-551
-
-
Vora, K.A.1
Wang, L.C.2
Rao, S.P.3
Liu, Z.Y.4
Majeau, G.R.5
Cutler, A.H.6
Hochman, P.S.7
Scott, M.L.8
Kalled, S.L.9
|