-
1
-
-
56749159833
-
Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks
-
Springer
-
Ahmed, A., Yu, K., Xu, W., Gong, Y., Xing, E., (2008). Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks, in European Conference on Computer Vision (Springer),69–82. 10.1007/978-3-540-88690-76.
-
(2008)
European Conference on Computer Vision
, pp. 69-82
-
-
Ahmed, A.1
Yu, K.2
Xu, W.3
Gong, Y.4
Xing, E.5
-
2
-
-
85038853251
-
An open resource for transdiagnostic research in pediatric mental health and learning disorders
-
29257126
-
Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A.,. (2017). An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data, 4:170181. 10.1038/sdata.2017.181, 29257126.
-
(2017)
Sci. Data
, vol.4
, pp. 170181
-
-
Alexander, L.M.1
Escalera, J.2
Ai, L.3
Andreotti, C.4
Febre, K.5
Mangone, A.6
-
3
-
-
20444501009
-
Unified segmentation
-
15955494
-
Ashburner, J., Friston, K. J., (2005). Unified segmentation. NeuroImage, 26, 839–851. 10.1016/j.neuroimage.2005.02.018, 15955494.
-
(2005)
NeuroImage
, vol.26
, pp. 839-851
-
-
Ashburner, J.1
Friston, K.J.2
-
4
-
-
78650181934
-
A reproducible evaluation of ANTs similarity metric performance in brain image registration
-
20851191
-
Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., Gee, J. C., (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54, 2033–2044. 10.1016/j.neuroimage.2010.09.025, 20851191.
-
(2011)
NeuroImage
, vol.54
, pp. 2033-2044
-
-
Avants, B.B.1
Tustison, N.J.2
Song, G.3
Cook, P.A.4
Klein, A.5
Gee, J.C.6
-
5
-
-
84897381481
-
Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy
-
24676149
-
Benson, N., Butt, O., Brainard, D., Aguirre, G., (2014). Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy. PLoS Comput. Biol., 10:e1003538. 10.1016/504j.neuroimage.2010.09.025, 24676149.
-
(2014)
PLoS Comput. Biol
, vol.10
, pp. e1003538
-
-
Benson, N.1
Butt, O.2
Brainard, D.3
Aguirre, G.4
-
6
-
-
84868581147
-
The retinotopic organization of striate cortex is well predicted by surface topology
-
23041195
-
Benson, N., Butt, O., Datta, R., Radoeva, P., Brainard, D., Aguirre, G., (2012). The retinotopic organization of striate cortex is well predicted by surface topology. Curr. Biol., 22, 2081–2085. 10.1016/j.cub.2012.09.014, 23041195.
-
(2012)
Curr. Biol
, vol.22
, pp. 2081-2085
-
-
Benson, N.1
Butt, O.2
Datta, R.3
Radoeva, P.4
Brainard, D.5
Aguirre, G.6
-
7
-
-
85049372586
-
-
Brett, M., Hanke, M., Markiewicz, C., Côté, M.-A., McCarthy, P., Ghosh, S.,. (2018). nipy/nibabel: 2.3.0. Available online at: https://github.com/nipy/nibabel.
-
(2018)
nipy/nibabel: 2.3.0
-
-
Brett, M.1
Hanke, M.2
Markiewicz, C.3
Côté, M.-A.4
McCarthy, P.5
Ghosh, S.6
-
8
-
-
85044109382
-
The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites
-
29567376
-
Casey, B., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M.,. (2018). The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci., 32, 43–54. 10.1016/j.dcn.2018.03.001, 29567376.
-
(2018)
Dev. Cogn. Neurosci
, vol.32
, pp. 43-54
-
-
Casey, B.1
Cannonier, T.2
Conley, M.I.3
Cohen, A.O.4
Barch, D.M.5
Heitzeg, M.M.6
-
9
-
-
49649112953
-
A diffusion tensor imaging tractography atlas for virtual in vivo dissections
-
18619589
-
Catani, M., Thiebautdeschotten, M., (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44, 1105–1132. 10.1016/j.cortex.2008.05.004, 18619589.
-
(2008)
Cortex
, vol.44
, pp. 1105-1132
-
-
Catani, M.1
Thiebautdeschotten, M.2
-
10
-
-
85050232544
-
Interpretability of deep learning models: a survey of results
-
San Francisco, CA, in
-
Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cerutti, F.,. (2017). Interpretability of deep learning models: a survey of results, in IEEE Smart World Congress 2017 Workshop: DAIS 2017 - Workshop on Distributed Analytics InfraStructure and Algorithms for Multi-Organization Federations (San Francisco, CA). 10.1109/UIC-ATC.2017.8397411.
-
(2017)
IEEE Smart World Congress 2017 Workshop: DAIS 2017 - Workshop on Distributed Analytics InfraStructure and Algorithms for Multi-Organization Federations
-
-
Chakraborty, S.1
Tomsett, R.2
Raghavendra, R.3
Harborne, D.4
Alzantot, M.5
Cerutti, F.6
-
11
-
-
84984950690
-
Xgboost: a scalable tree boosting system
-
San Francisco, CA, ACM
-
Chen, T., Guestrin, C., (2016). Xgboost: a scalable tree boosting system, in Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining (San Francisco, CA: ACM), 785–794.
-
(2016)
Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
, pp. 785-794
-
-
Chen, T.1
Guestrin, C.2
-
12
-
-
84951025363
-
Break it down: a comparison of macro-and microtasks
-
Seoul, ACM
-
Cheng, J., Teevan, J., Iqbal, S. T., Bernstein, M. S., (2015). Break it down: a comparison of macro-and microtasks, in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul: ACM), 4061–4064.
-
(2015)
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
, pp. 4061-4064
-
-
Cheng, J.1
Teevan, J.2
Iqbal, S.T.3
Bernstein, M.S.4
-
13
-
-
84971640658
-
-
Chollet, F., (2015). Keras. Available online at: https://github.com/keras-team/keras.
-
(2015)
Keras
-
-
Chollet, F.1
-
14
-
-
84996483314
-
3D U-Net: learning dense volumetric segmentation from sparse annotation
-
Athens, Springer
-
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O., (2016). 3D U-Net: learning dense volumetric segmentation from sparse annotation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Athens: Springer), 424–432.
-
(2016)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 424-432
-
-
Çiçek, Ö.1
Abdulkadir, A.2
Lienkamp, S.S.3
Brox, T.4
Ronneberger, O.5
-
15
-
-
85015580937
-
Using deep learning to segment breast and fibroglandular tissue in MRI volumes
-
28035663
-
Dalmış, M. U., Litjens, G., Holland, K., Setio, A., Mann, R., Karssemeijer, N.,. (2017). Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys., 44, 533–546. 10.1002/mp.12079, 28035663.
-
(2017)
Med. Phys
, vol.44
, pp. 533-546
-
-
Dalmış, M.U.1
Litjens, G.2
Holland, K.3
Setio, A.4
Mann, R.5
Karssemeijer, N.6
-
16
-
-
84863406165
-
LORIS: a web-based data management system for multi-center studies
-
22319489
-
Das, S., Zijdenbos, A. P., Vins, D., Harlap, J., Evans, A. C., (2012). LORIS: a web-based data management system for multi-center studies. Front. Neuroinform., 5:37. 10.3389/fninf.2011.00037, 22319489.
-
(2012)
Front. Neuroinform
, vol.5
, pp. 37
-
-
Das, S.1
Zijdenbos, A.P.2
Vins, D.3
Harlap, J.4
Evans, A.C.5
-
17
-
-
84947938213
-
Trajectories of cortical thickness maturation in normal brain development—The importance of quality control procedures
-
26463175
-
Ducharme, S., Albaugh, M. D., Nguyen, T.-V., Hudziak, J. J., Mateos-Pérez, J., Labbe, A.,. (2016). Trajectories of cortical thickness maturation in normal brain development—The importance of quality control procedures. Neuroimage, 125, 267–279. 10.1016/j.neuroimage.2015.10.010, 26463175.
-
(2016)
Neuroimage
, vol.125
, pp. 267-279
-
-
Ducharme, S.1
Albaugh, M.D.2
Nguyen, T.-V.3
Hudziak, J.J.4
Mateos-Pérez, J.5
Labbe, A.6
-
18
-
-
85031689321
-
MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites
-
28945803
-
Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., Gorgolewski, K. J., (2017). MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE, 12:e0184661. 10.1371/journal.pone.0184661, 28945803.
-
(2017)
PLoS ONE
, vol.12
, pp. e0184661
-
-
Esteban, O.1
Birman, D.2
Schaer, M.3
Koyejo, O.O.4
Poldrack, R.A.5
Gorgolewski, K.J.6
-
19
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
28117445
-
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M.,. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542:115. 10.1038/nature21056, 28117445.
-
(2017)
Nature
, vol.542
, pp. 115
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
Ko, J.4
Swetter, S.M.5
Blau, H.M.6
-
20
-
-
84919389078
-
Challenges of big data analysis
-
25419469
-
Fan, J., Han, F., Liu, H., (2014). Challenges of big data analysis. Nat. Sci. Rev., 1, 293–314. 10.1093/nsr/nwt032, 25419469.
-
(2014)
Nat. Sci. Rev
, vol.1
, pp. 293-314
-
-
Fan, J.1
Han, F.2
Liu, H.3
-
21
-
-
84908520751
-
Big data from small data: data-sharing in the ‘long tail’of neuroscience
-
25349910
-
Ferguson, A. R., Nielson, J. L., Cragin, M. H., Bandrowski, A. E., Martone, M. E., (2014). Big data from small data: data-sharing in the ‘long tail’of neuroscience. Nat. Neurosci., 17, 1442–1447. 10.1038/nn.3838, 25349910.
-
(2014)
Nat. Neurosci
, vol.17
, pp. 1442-1447
-
-
Ferguson, A.R.1
Nielson, J.L.2
Cragin, M.H.3
Bandrowski, A.E.4
Martone, M.E.5
-
22
-
-
84862997809
-
FreeSurfer
-
22248573
-
Fischl, B., (2012). FreeSurfer. Neuroimage, 62, 774–781. 10.1016/j.neuroimage.2012.01.021, 22248573.
-
(2012)
Neuroimage
, vol.62
, pp. 774-781
-
-
Fischl, B.1
-
23
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Washington, DC
-
Girshick, R., Donahue, J., Darrell, T., Malik, J., (2014). Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Washington, DC), 580–587.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
24
-
-
84984682168
-
The human connectome project's neuroimaging approach
-
27571196
-
Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J., Behrens, T. E.,. (2016). The human connectome project's neuroimaging approach. Nat. Neurosci., 19:1175–1187. 10.1038/nn.4361, 27571196.
-
(2016)
Nat. Neurosci
, vol.19
, pp. 1175-1187
-
-
Glasser, M.F.1
Smith, S.M.2
Marcus, D.S.3
Andersson, J.L.4
Auerbach, E.J.5
Behrens, T.E.6
-
25
-
-
85057219164
-
-
a, Vancouver, BC, Organization for Human Brain Maing
-
Gorgolewski, K., Esteban, O., Schaefer, G., Wandell, B., Poldrack, R., (2017a). OpenNeuro—a Free Online Platform for Sharing and Analysis of Neuroimaging Data., Vancouver, BC: Organization for Human Brain Mapping.
-
(2017)
OpenNeuro—a Free Online Platform for Sharing and Analysis of Neuroimaging Data
-
-
Gorgolewski, K.1
Esteban, O.2
Schaefer, G.3
Wandell, B.4
Poldrack, R.5
-
26
-
-
85016747642
-
BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods
-
b, 28278228
-
Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotă, M., Chakravarty, M. M.,. (2017b). BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Comput. Biol., 13:e1005209. 10.1371/journal.pcbi.1005209, 28278228.
-
(2017)
PLoS Comput. Biol
, vol.13
, pp. e1005209
-
-
Gorgolewski, K.J.1
Alfaro-Almagro, F.2
Auer, T.3
Bellec, P.4
Capotă, M.5
Chakravarty, M.M.6
-
27
-
-
84975789666
-
The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
-
27326542
-
Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P.,. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data, 3:160044. 10.1038/sdata.2016.44.27326542.
-
(2016)
Sci. Data
, vol.3
, pp. 160044
-
-
Gorgolewski, K.J.1
Auer, T.2
Calhoun, V.D.3
Craddock, R.C.4
Das, S.5
Duff, E.P.6
-
28
-
-
85008185859
-
Hand classification of fMRI ICA noise components
-
27989777
-
Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M. F.,. (2017). Hand classification of fMRI ICA noise components. Neuroimage, 154, 188–205. 10.1016/j.neuroimage.2016.12.036, 27989777.
-
(2017)
Neuroimage
, vol.154
, pp. 188-205
-
-
Griffanti, L.1
Douaud, G.2
Bijsterbosch, J.3
Evangelisti, S.4
Alfaro-Almagro, F.5
Glasser, M.F.6
-
29
-
-
85027887991
-
Open neuroimaging laboratory
-
Heuer, K., Ghosh, S., Sterling, A. R., Toro, R., (2016). Open neuroimaging laboratory. Res. Ideas Outcomes, 2:e9113. 10.3897/rio.2.e9113.
-
(2016)
Res. Ideas Outcomes
, vol.2
, pp. e9113
-
-
Heuer, K.1
Ghosh, S.2
Sterling, A.R.3
Toro, R.4
-
30
-
-
85030157810
-
Cluster confidence index: a streamline-wise pathway reproducibility metric for diffusion-weighted MRI tractography
-
a, 28940825
-
Jordan, K. M., Amirbekian, B., Keshavan, A., Henry, R. G., (2017a). Cluster confidence index: a streamline-wise pathway reproducibility metric for diffusion-weighted MRI tractography. J. Neuroimaging, 28, 64–69. 10.1111/jon.12467, 28940825.
-
(2017)
J. Neuroimaging
, vol.28
, pp. 64-69
-
-
Jordan, K.M.1
Amirbekian, B.2
Keshavan, A.3
Henry, R.G.4
-
31
-
-
85067411498
-
Investigating the functional consequence Of white matter damage: an automatic pipeline to create longitudinal disconnection
-
b
-
Jordan, K. M., Keshavan, A., Caverzasi, E., Osorio, J., Papinutto, N., Amirbekian, B.,. (2017b). Investigating the functional consequence Of white matter damage: an automatic pipeline to create longitudinal disconnection. biorxiv., 10.1101/140137.
-
(2017)
biorxiv
-
-
Jordan, K.M.1
Keshavan, A.2
Caverzasi, E.3
Osorio, J.4
Papinutto, N.5
Amirbekian, B.6
-
32
-
-
85017544887
-
Mindcontrol: a web application for brain segmentation quality control
-
28365419
-
Keshavan, A., Datta, E., McDonough, I. M., Madan, C. R., Jordan, K., Henry, R. G., (2017). Mindcontrol: a web application for brain segmentation quality control. NeuroImage, 170, 365–372. 10.1016/j.neuroimage.2017.03.055, 28365419.
-
(2017)
NeuroImage
, vol.170
, pp. 365-372
-
-
Keshavan, A.1
Datta, E.2
McDonough, I.M.3
Madan, C.R.4
Jordan, K.5
Henry, R.G.6
-
33
-
-
85059957861
-
Combining citizen science and deep learning to amplify expertise in neuroimaging
-
363382
-
Keshavan, A., Yeatman, J., Rokem, A., (2018). Combining citizen science and deep learning to amplify expertise in neuroimaging. bioRxiv 363382. 10.1101/363382.
-
(2018)
bioRxiv
-
-
Keshavan, A.1
Yeatman, J.2
Rokem, A.3
-
34
-
-
84900523778
-
Space–time wiring specificity supports direction selectivity in the retina
-
24805243
-
Kim, J. S., Greene, M. J., Zlateski, A., Lee, K., Richardson, M., Turaga, S. C.,. (2014). Space–time wiring specificity supports direction selectivity in the retina. Nature, 509:331. 10.1038/nature13240, 24805243.
-
(2014)
Nature
, vol.509
, pp. 331
-
-
Kim, J.S.1
Greene, M.J.2
Zlateski, A.3
Lee, K.4
Richardson, M.5
Turaga, S.C.6
-
35
-
-
85014292275
-
Mindboggling morphometry of human brains
-
28231282
-
Klein, A., Ghosh, S. S., Bao, F. S., Giard, J., Häme, Y., Stavsky, E.,. (2017). Mindboggling morphometry of human brains. PLoS Comput. Biol., 13:e1005350. 10.1371/journal.pcbi.1005350, 28231282.
-
(2017)
PLoS Comput. Biol
, vol.13
, pp. e1005350
-
-
Klein, A.1
Ghosh, S.S.2
Bao, F.S.3
Giard, J.4
Häme, Y.5
Stavsky, E.6
-
36
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
New York, NY
-
Krizhevsky, A., Sutskever, I., Hinton, G. E., (2012). Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems (New York, NY), 1097–1105. 10.1145/3065386.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
37
-
-
79960933078
-
Longitudinal development of human brain wiring continues from childhood into adulthood
-
21795544
-
Lebel, C., Beaulieu, C., (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. J. Neurosci., 31, 10937–10947. 10.1523/JNEUROSCI.5302-10.2011, 21795544.
-
(2011)
J. Neurosci
, vol.31
, pp. 10937-10947
-
-
Lebel, C.1
Beaulieu, C.2
-
38
-
-
85027881492
-
Deep learning is effective for classifying normal versus age-related macular degeneration OCT images
-
a
-
Lee, C. S., Baughman, D. M., Lee, A. Y., (2017a). Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol. Retina, 1, 322–327. 10.1016/j.oret.2016.12.009.
-
(2017)
Ophthalmol. Retina
, vol.1
, pp. 322-327
-
-
Lee, C.S.1
Baughman, D.M.2
Lee, A.Y.3
-
39
-
-
85023600747
-
Deep-learning based automated segmentation of macular edema in optical coherence tomography
-
b, 28717579
-
Lee, C. S., Tyring, A. J., Deruyter, N. P., Wu, Y., Rokem, A., Lee, A. Y., (2017b). Deep-learning based automated segmentation of macular edema in optical coherence tomography. Biomed. Opt. Express, 8, 3440–3448. 10.1364/BOE.8.003440, 28717579.
-
(2017)
Biomed. Opt. Express
, vol.8
, pp. 3440-3448
-
-
Lee, C.S.1
Tyring, A.J.2
Deruyter, N.P.3
Wu, Y.4
Rokem, A.5
Lee, A.Y.6
-
40
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Boston, MA
-
Long, J., Shelhamer, E., Darrell, T., (2015). Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Boston, MA), 3431–3440.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
41
-
-
84887064033
-
Neuroscience waves to the crowd
-
24173382
-
Marx, V., (2013). Neuroscience waves to the crowd. Nat. Methods, 10, 1069–1074. 10.1038/nmeth.2695, 24173382.
-
(2013)
Nat. Methods
, vol.10
, pp. 1069-1074
-
-
Marx, V.1
-
42
-
-
67749101498
-
Automatic quality assessment in structural brain magnetic resonance imaging
-
19526493
-
Mortamet, B., Bernstein, M. A., Jack, C. R., Gunter, J. L., Ward, C., Britson, P. J.,. (2009). Automatic quality assessment in structural brain magnetic resonance imaging. Mag. Res. Med., 62, 365–372. 10.1002/mrm.21992, 19526493.
-
(2009)
Mag. Res. Med
, vol.62
, pp. 365-372
-
-
Mortamet, B.1
Bernstein, M.A.2
Jack, C.R.3
Gunter, J.L.4
Ward, C.5
Britson, P.J.6
-
43
-
-
77956031473
-
A survey on transfer learning
-
Pan, S. J., Yang, Q., (2010). A survey on transfer learning. IEEE Trans. Knowledge Data Eng., 22, 1345–1359. 10.1109/TKDE.2009.191.
-
(2010)
IEEE Trans. Knowledge Data Eng
, vol.22
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
44
-
-
79955484518
-
A Bayesian model of shape and appearance for subcortical brain segmentation
-
21352927
-
Patenaude, B., Smith, S. M., Kennedy, D. N., Jenkinson, M., (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56, 907–922. 10.1016/j.neuroimage.2011.02.046, 21352927.
-
(2011)
NeuroImage
, vol.56
, pp. 907-922
-
-
Patenaude, B.1
Smith, S.M.2
Kennedy, D.N.3
Jenkinson, M.4
-
45
-
-
80555140075
-
Scikit-learn: machine learning in Python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res., 12, 2825–2830. Available online at: https://scikit-learn.org/stable/about.html#citing-scikit-learn.
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
-
46
-
-
84908520795
-
Making big data open: data sharing in neuroimaging
-
25349916
-
Poldrack, R. A., Gorgolewski, K. J., (2014). Making big data open: data sharing in neuroimaging. Nat. Neurosci., 17, 1510–1517. 10.1038/nn.3818, 25349916.
-
(2014)
Nat. Neurosci
, vol.17
, pp. 1510-1517
-
-
Poldrack, R.A.1
Gorgolewski, K.J.2
-
47
-
-
84951834022
-
U-net: convolutional networks for biomedical image segmentation
-
Munich, Springer
-
Ronneberger, O., Fischer, P., Brox, T., (2015). U-net: convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Munich: Springer), 234–241. 10.1007/978-3-319-24574-428.
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
48
-
-
84994761887
-
Power to the people: addressing big data challenges in neuroscience by creating a new cadre of citizen neuroscientists
-
27810012
-
Roskams, J., Popović, Z., (2016). Power to the people: addressing big data challenges in neuroscience by creating a new cadre of citizen neuroscientists. Neuron, 92, 658–664. 10.1016/j.neuron.2016.10.045, 27810012.
-
(2016)
Neuron
, vol.92
, pp. 658-664
-
-
Roskams, J.1
Popović, Z.2
-
49
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,. (2015). ImageNet large scale visual recognition challenge. Intl. J. Comput. Vision, 115, 211–252. 10.1007/s11263-015-0816-y.
-
(2015)
Intl. J. Comput. Vision
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
-
50
-
-
0030270445
-
Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images
-
18215941
-
Sahiner, B., Chan, H.-P., Petrick, N., Wei, D., Helvie, M. A., Adler, D. D.,. (1996). Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans. Med. Imaging, 15, 598–610. 10.1109/42.538937, 18215941.
-
(1996)
IEEE Trans. Med. Imaging
, vol.15
, pp. 598-610
-
-
Sahiner, B.1
Chan, H.-P.2
Petrick, N.3
Wei, D.4
Helvie, M.A.5
Adler, D.D.6
-
51
-
-
84928911070
-
The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
-
25738806
-
Saito, T., Rehmsmeier, M., (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE, 10:e0118432. 10.1371/journal.pone.0118432, 25738806.
-
(2015)
PLoS ONE
, vol.10
, pp. e0118432
-
-
Saito, T.1
Rehmsmeier, M.2
-
52
-
-
85015404202
-
The preprocessed connectomes project quality assessment protocol: a resource for measuring the quality of MRI data
-
Shehzad, Z., Giavasis, S., Li, Q., Benhajali, Y., Yan, C., Yang, Z.,. (2015). The preprocessed connectomes project quality assessment protocol: a resource for measuring the quality of MRI data. Front. Neurosci., 9:47. 10.3389/conf.fnins.2015.91.00047.
-
(2015)
Front. Neurosci
, vol.9
, pp. 47
-
-
Shehzad, Z.1
Giavasis, S.2
Li, Q.3
Benhajali, Y.4
Yan, C.5
Yang, Z.6
-
54
-
-
84990902010
-
Zooniverse: observing the world's largest citizen science platform
-
Seoul, ACM
-
Simpson, R., Page, K. R., De Roure, D., (2014). Zooniverse: observing the world's largest citizen science platform, in Proceedings of the 23rd International Conference on World Wide Web (Seoul: ACM), 1049–1054. 10.1145/2567948.2579215.
-
(2014)
Proceedings of the 23rd International Conference on World Wide Web
, pp. 1049-1054
-
-
Simpson, R.1
Page, K.R.2
De Roure, D.3
-
55
-
-
84899144125
-
Human neuroimaging as a “Big Data” science
-
24113873
-
Van Horn, J. D., Toga, A. W., (2013). Human neuroimaging as a “Big Data” science. Brain Imaging Behav., 8, 323–331. 10.1007/s11682-013-9255-y, 24113873.
-
(2013)
Brain Imaging Behav
, vol.8
, pp. 323-331
-
-
Van Horn, J.D.1
Toga, A.W.2
-
56
-
-
84929483880
-
Transfer learning improves supervised image segmentation across imaging protocols
-
25376036
-
Van Opbroek, A., Ikram, M. A., Vernooij, M. W., De Bruijne, M., (2015). Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans. Med. Imaging, 34, 1018–1030. 10.1109/TMI.2014.2366792, 25376036.
-
(2015)
IEEE Trans. Med. Imaging
, vol.34
, pp. 1018-1030
-
-
Van Opbroek, A.1
Ikram, M.A.2
Vernooij, M.W.3
De Bruijne, M.4
-
57
-
-
79953747387
-
Imaging retinotopic maps in the human brain
-
20692278
-
Wandell, B., Winawer, J., (2011). Imaging retinotopic maps in the human brain. Vision Res., 51, 718–737. 10.1016/j.visres.2010.08.004, 20692278.
-
(2011)
Vision Res
, vol.51
, pp. 718-737
-
-
Wandell, B.1
Winawer, J.2
-
58
-
-
85060131775
-
Identification of the ventral occipital visual field maps in the human brain
-
29188017
-
Winawer, J., Witthoft, N., (2017). Identification of the ventral occipital visual field maps in the human brain. F1000Res, 6:1526. 10.12688/f1000research.12364.1, 29188017.
-
(2017)
F1000Res
, vol.6
, pp. 1526
-
-
Winawer, J.1
Witthoft, N.2
-
59
-
-
84869127194
-
Tract profiles of white matter properties: automating fiber-tract quantification
-
23166771
-
Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A., Feldman, H. M., (2012). Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE, 7:e49790. 10.1371/journal.pone.0049790, 23166771.
-
(2012)
PLoS ONE
, vol.7
, pp. e49790
-
-
Yeatman, J.D.1
Dougherty, R.F.2
Myall, N.J.3
Wandell, B.A.4
Feldman, H.M.5
|