메뉴 건너뛰기




Volumn 12, Issue 9, 2017, Pages

MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFACT; CLASSIFIER; CONTROLLED STUDY; CROSS VALIDATION; HUMAN; IMAGE QUALITY; INFORMATION SERVICE; MAJOR CLINICAL STUDY; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PLANT LEAF; PREDICTION; VALIDATION PROCESS; BRAIN; COMPUTER ASSISTED DIAGNOSIS; DIAGNOSTIC IMAGING; IMAGE ENHANCEMENT; OBSERVER VARIATION; PROCEDURES; SOFTWARE;

EID: 85031689321     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0184661     Document Type: Article
Times cited : (554)

References (47)
  • 1
    • 84855455705 scopus 로고    scopus 로고
    • Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
    • PMID: 22019881
    • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012; 59(3):2142-2154. https://doi.org/10.1016/j.neuroimage.2011.10.018 PMID: 22019881
    • (2012) NeuroImage , vol.59 , Issue.3 , pp. 2142-2154
    • Power, J.D.1    Barnes, K.A.2    Snyder, A.Z.3    Schlaggar, B.L.4    Petersen, S.E.5
  • 2
    • 84892872124 scopus 로고    scopus 로고
    • Spurious group differences due to head motion in a diffusion MRI study
    • PMID: 24269273
    • Yendiki A, Koldewyn K, Kakunoori S, Kanwisher N, Fischl B. Spurious group differences due to head motion in a diffusion MRI study. NeuroImage. 2014; 88:79-90. https://doi.org/10.1016/j.neuroimage.2013.11.027 PMID: 24269273
    • (2014) NeuroImage , vol.88 , pp. 79-90
    • Yendiki, A.1    Koldewyn, K.2    Kakunoori, S.3    Kanwisher, N.4    Fischl, B.5
  • 3
    • 84917683236 scopus 로고    scopus 로고
    • Head motion during MRI acquisition reduces gray matter volume and thickness estimates
    • PMID: 25498430
    • Reuter M, Tisdall MD, Qureshi A, Buckner RL, van der Kouwe AJW, Fischl B. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. NeuroImage. 2015; 107:107-115. https://doi.org/10.1016/j.neuroimage.2014.12.006 PMID: 25498430
    • (2015) NeuroImage , vol.107 , pp. 107-115
    • Reuter, M.1    Tisdall, M.D.2    Qureshi, A.3    Buckner, R.L.4    van der Kouwe, A.J.W.5    Fischl, B.6
  • 4
    • 84974711219 scopus 로고    scopus 로고
    • Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI
    • PMID: 27004471
    • Alexander-Bloch A, Clasen L, Stockman M, Ronan L, Lalonde F, Giedd J, et al. Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI. Human Brain Mapping. 2016; 37(7):2385-2397. https://doi.org/10.1002/hbm.23180 PMID: 27004471
    • (2016) Human Brain Mapping , vol.37 , Issue.7 , pp. 2385-2397
    • Alexander-Bloch, A.1    Clasen, L.2    Stockman, M.3    Ronan, L.4    Lalonde, F.5    Giedd, J.6
  • 5
    • 0024438651 scopus 로고
    • Measuring signal-to-noise ratios in MR imaging
    • PMID: 2781018
    • Kaufman L, Kramer DM, Crooks LE, Ortendahl DA. Measuring signal-to-noise ratios in MR imaging. Radiology. 1989; 173(1):265-267. https://doi.org/10.1148/radiology.173.1.2781018 PMID: 2781018
    • (1989) Radiology , vol.173 , Issue.1 , pp. 265-267
    • Kaufman, L.1    Kramer, D.M.2    Crooks, L.E.3    Ortendahl, D.A.4
  • 6
    • 0029279090 scopus 로고
    • Detection of degradation of magnetic resonance (MR) images: Comparison of an automated MR image-quality analysis system with trained human observers
    • PMID: 9419562
    • Gardner EA, Ellis JH, Hyde RJ, Aisen AM, Quint DJ, Carson PL. Detection of degradation of magnetic resonance (MR) images: Comparison of an automated MR image-quality analysis system with trained human observers. Academic Radiology. 1995; 2(4):277-281. https://doi.org/10.1016/S1076-6332(05) 80184-9 PMID: 9419562
    • (1995) Academic Radiology , vol.2 , Issue.4 , pp. 277-281
    • Gardner, E.A.1    Ellis, J.H.2    Hyde, R.J.3    Aisen, A.M.4    Quint, D.J.5    Carson, P.L.6
  • 7
    • 84865290754 scopus 로고    scopus 로고
    • The human connectome project: A data acquisition perspective
    • PMID: 22366334
    • Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, et al. The Human Connectome Project: A data acquisition perspective. NeuroImage. 2012; 62(4):2222-2231. https://doi.org/10.1016/j.neuroimage.2012.02.018 PMID: 22366334
    • (2012) NeuroImage , vol.62 , Issue.4 , pp. 2222-2231
    • van Essen, D.C.1    Ugurbil, K.2    Auerbach, E.3    Barch, D.4    Behrens, T.E.J.5    Bucholz, R.6
  • 8
    • 84901284227 scopus 로고    scopus 로고
    • The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism
    • PMID: 23774715
    • Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry. 2014; 19(6):659-667. https://doi.org/10.1038/mp.2013.78 PMID: 23774715
    • (2014) Molecular Psychiatry , vol.19 , Issue.6 , pp. 659-667
    • Di Martino, A.1    Yan, C.G.2    Li, Q.3    Denio, E.4    Castellanos, F.X.5    Alaerts, K.6
  • 9
    • 84988310761 scopus 로고    scopus 로고
    • Multimodal population brain imaging in the UK Biobank prospective epidemiological study
    • PMID: 27643430
    • Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature Neuroscience. 2016; 19:1523-1536. https://doi.org/10.1038/nn.4393 PMID: 27643430
    • (2016) Nature Neuroscience , vol.19 , pp. 1523-1536
    • Miller, K.L.1    Alfaro-Almagro, F.2    Bangerter, N.K.3    Thomas, D.L.4    Yacoub, E.5    Xu, J.6
  • 10
    • 0025266992 scopus 로고
    • Quality assurance methods and phantoms for magnetic resonance imaging: Report of AAPM nuclear magnetic resonance task group No. 1
    • PMID: 2333055
    • Price RR, Axel L, Morgan T, Newman R, Perman W, Schneiders N, et al. Quality assurance methods and phantoms for magnetic resonance imaging: Report of AAPM nuclear magnetic resonance Task Group No. 1. Medical Physics. 1990; 17(2):287-295. https://doi.org/10.1118/1.596566 PMID: 2333055
    • (1990) Medical Physics , vol.17 , Issue.2 , pp. 287-295
    • Price, R.R.1    Axel, L.2    Morgan, T.3    Newman, R.4    Perman, W.5    Schneiders, N.6
  • 11
    • 33748336698 scopus 로고    scopus 로고
    • No-Reference image quality metrics for structural MRI
    • PMID: 16943630
    • Woodard JP, Carley-Spencer MP. No-Reference image quality metrics for structural MRI. Neuroinformatics. 2006; 4(3):243-262. https://doi.org/10.1385/NI:4:3:243 PMID: 16943630
    • (2006) Neuroinformatics , vol.4 , Issue.3 , pp. 243-262
    • Woodard, J.P.1    Carley-Spencer, M.P.2
  • 12
    • 67749101498 scopus 로고    scopus 로고
    • Automatic quality assessment in structural brain magnetic resonance imaging
    • PMID: 19526493
    • Mortamet B, Bernstein MA, Jack CR, Gunter JL, Ward C, Britson PJ, et al. Automatic quality assessment in structural brain magnetic resonance imaging. Magnetic Resonance in Medicine. 2009; 62 (2):365-372. https://doi.org/10.1002/mrm.21992 PMID: 19526493
    • (2009) Magnetic Resonance in Medicine , vol.62 , Issue.2 , pp. 365-372
    • Mortamet, B.1    Bernstein, M.A.2    Jack, C.R.3    Gunter, J.L.4    Ward, C.5    Britson, P.J.6
  • 14
    • 85015404202 scopus 로고    scopus 로고
    • The preprocessed connectomes project quality assessment protocol-a resource for measuring the quality of MRI data
    • Cairns, Australia
    • Shehzad Z, Giavasis S, Li Q, Benhajali Y, Yan C, Yang Z, et al. The Preprocessed Connectomes Project Quality Assessment Protocol-a resource for measuring the quality of MRI data. In: Front. Neurosci. Conf. Neuroinformatics. Cairns, Australia; 2015.
    • (2015) Front. Neurosci. Conf. Neuroinformatics.
    • Shehzad, Z.1    Giavasis, S.2    Li, Q.3    Benhajali, Y.4    Yan, C.5    Yang, Z.6
  • 15
    • 85011105698 scopus 로고    scopus 로고
    • Automated quality assessment of structural magnetic resonance brain images based on a supervised machine learning algorithm
    • PMID: 28066227
    • Pizarro RA, Cheng X, Barnett A, Lemaitre H, Verchinski BA, Goldman AL, et al. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm. Frontiers in Neuroinformatics. 2016; 10. https://doi.org/10.3389/fninf.2016.00052 PMID: 28066227
    • (2016) Frontiers in Neuroinformatics , vol.10
    • Pizarro, R.A.1    Cheng, X.2    Barnett, A.3    Lemaitre, H.4    Verchinski, B.A.5    Goldman, A.L.6
  • 16
    • 18544372466 scopus 로고    scopus 로고
    • Understanding interobserver agreement: The kappa statistic
    • PMID: 15883903
    • Viera AJ, Garrett JM. Understanding interobserver agreement: the Kappa statistic. Family Medicine. 2005; 37(5):360-363. PMID: 15883903
    • (2005) Family Medicine , vol.37 , Issue.5 , pp. 360-363
    • Viera, A.J.1    Garrett, J.M.2
  • 18
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • PMID: 20838408
    • Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics. 2010; 11 (10):733-739. https://doi.org/10.1038/nrg2825 PMID: 20838408
    • (2010) Nature Reviews Genetics , vol.11 , Issue.10 , pp. 733-739
    • Leek, J.T.1    Scharpf, R.B.2    Bravo, H.C.3    Simcha, D.4    Langmead, B.5    Johnson, W.E.6
  • 21
    • 84862997809 scopus 로고    scopus 로고
    • PMID: 22248573
    • Fischl B. FreeSurfer. NeuroImage. 2012; 62(2):774-781. https://doi.org/10.1016/j.neuroimage.2012.01.021 PMID: 22248573
    • (2012) FreeSurfer. NeuroImage. , vol.62 , Issue.2 , pp. 774-781
    • Fischl, B.1
  • 22
    • 85009814626 scopus 로고    scopus 로고
    • Quality control of structural MRI images applied using FreeSurfer-a hands-on workflow to rate motion artifacts
    • PMID: 27999528
    • Backhausen LL, Herting MM, Buse J, Roessner V, Smolka MN, Vetter NC. Quality Control of Structural MRI Images Applied Using FreeSurfer-A Hands-On Workflow to Rate Motion Artifacts. Frontiers in Neuroscience. 2016; 10. https://doi.org/10.3389/fnins.2016.00558 PMID: 27999528
    • (2016) Frontiers in Neuroscience , vol.10
    • Backhausen, L.L.1    Herting, M.M.2    Buse, J.3    Roessner, V.4    Smolka, M.N.5    Vetter, N.C.6
  • 26
    • 0030714713 scopus 로고    scopus 로고
    • Software tools for analysis and visualization of fMRI data
    • PMID: 9430344
    • Cox RW, Hyde JS. Software tools for analysis and visualization of fMRI data. NMR in Biomedicine. 1997; 10(4-5):171-178. https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5%3C171::AIDNBM453%3E3.0.CO;2-L PMID: 9430344
    • (1997) NMR in Biomedicine , vol.10 , Issue.4-5 , pp. 171-178
    • Cox, R.W.1    Hyde, J.S.2
  • 27
    • 84975789666 scopus 로고    scopus 로고
    • The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
    • PMID: 27326542
    • Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data. 2016; 3:160044. https://doi.org/10.1038/sdata.2016.44 PMID: 27326542
    • (2016) Scientific Data , vol.3 , pp. 160044
    • Gorgolewski, K.J.1    Auer, T.2    Calhoun, V.D.3    Craddock, R.C.4    Das, S.5    Duff, E.P.6
  • 28
    • 85016747642 scopus 로고    scopus 로고
    • BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods
    • PMID: 28278228
    • Gorgolewski KJ, Alfaro-Almagro F, Auer T, Bellec P, Capotă M, Chakravarty MM, et al. BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLOS Computational Biology. 2017; 13(3):e1005209. https://doi.org/10.1371/journal.pcbi.1005209 PMID: 28278228
    • (2017) PLOS Computational Biology , vol.13 , Issue.3
    • Gorgolewski, K.J.1    Alfaro-Almagro, F.2    Auer, T.3    Bellec, P.4    Capotă, M.5    Chakravarty, M.M.6
  • 29
    • 85018864588 scopus 로고    scopus 로고
    • Singularity: Scientific containers for mobility of compute
    • PMID: 28494014
    • Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLOS ONE. 2017; 12(5):e0177459. https://doi.org/10.1371/journal.pone.0177459 PMID: 28494014
    • (2017) PLOS ONE , vol.12 , Issue.5
    • Kurtzer, G.M.1    Sochat, V.2    Bauer, M.W.3
  • 30
    • 84962284363 scopus 로고    scopus 로고
    • Intensity inhomogeneity correction of structural MR images: A data-driven approach to define input algorithm parameters
    • PMID: 27014050
    • Ganzetti M, Wenderoth N, Mantini D. Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters. Frontiers in Neuroinformatics. 2016; p. 10. https://doi.org/10.3389/fninf.2016.00010 PMID: 27014050
    • (2016) Frontiers in Neuroinformatics , pp. 10
    • Ganzetti, M.1    Wenderoth, N.2    Mantini, D.3
  • 31
    • 33748910620 scopus 로고    scopus 로고
    • Measurement of signal-to-noise and contrast-to-noise in the FBIRN multicenter imaging study
    • PMID: 16598643
    • Magnotta VA, Friedman L, Birn F. Measurement of Signal-to-Noise and Contrast-to-Noise in the fBIRN Multicenter Imaging Study. Journal of Digital Imaging. 2006; 19(2):140-147. https://doi.org/10.1007/ s10278-006-0264-x PMID: 16598643
    • (2006) Journal of Digital Imaging , vol.19 , Issue.2 , pp. 140-147
    • Magnotta, V.A.1    Friedman, L.2    Birn, F.3
  • 32
    • 34547879249 scopus 로고    scopus 로고
    • Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters
    • PMID: 17622966
    • Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters. Journal of Magnetic Resonance Imaging. 2007; 26(2):375-385. https://doi.org/10.1002/jmri.20969 PMID: 17622966
    • (2007) Journal of Magnetic Resonance Imaging , vol.26 , Issue.2 , pp. 375-385
    • Dietrich, O.1    Raya, J.G.2    Reeder, S.B.3    Reiser, M.F.4    Schoenberg, S.O.5
  • 33
    • 0031283439 scopus 로고    scopus 로고
    • Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion
    • PMID: 9533590
    • Atkinson D, Hill DLG, Stoyle PNR, Summers PE, Keevil SF. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Transactions on Medical Imaging. 1997; 16(6):903-910. https://doi.org/10.1109/42.650886 PMID: 9533590
    • (1997) IEEE Transactions on Medical Imaging , vol.16 , Issue.6 , pp. 903-910
    • Atkinson, D.1    Hill, D.L.G.2    Stoyle, P.N.R.3    Summers, P.E.4    Keevil, S.F.5
  • 34
    • 48949089466 scopus 로고    scopus 로고
    • Test-retest and between-site reliability in a multicenter fMRI study
    • PMID: 17636563
    • Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, et al. Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping. 2008; 29(8):958-972. https://doi.org/10.1002/hbm.20440 PMID: 17636563
    • (2008) Human Brain Mapping , vol.29 , Issue.8 , pp. 958-972
    • Friedman, L.1    Stern, H.2    Brown, G.G.3    Mathalon, D.H.4    Turner, J.5    Glover, G.H.6
  • 35
    • 77957939387 scopus 로고    scopus 로고
    • Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
    • Fonov V, Evans A, McKinstry R, Almli C, Collins D. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage. 2009; 47, Supplement 1:S102. https://doi.org/10.1016/ S1053-8119(09)70884-5
    • (2009) NeuroImage , vol.47 , pp. S102
    • Fonov, V.1    Evans, A.2    McKinstry, R.3    Almli, C.4    Collins, D.5
  • 37
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995; 20(3):273-297. https://doi.org/10.1007/BF00994018
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 38
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random Forests. Machine Learning. 2001; 45(1):5-32. https://doi.org/10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 39
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning. 2006; 63(1):3-42. https://doi.org/10.1007/s10994-006-6226-1
    • (2006) Machine Learning , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 40
    • 0023535761 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • Littlestone N. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. In: 28th Annual Symposium on Foundations of Computer Science; 1987. p. 68-77.
    • (1987) 28th Annual Symposium on Foundations of Computer Science , pp. 68-77
    • Littlestone, N.1
  • 41
    • 85009236692 scopus 로고    scopus 로고
    • Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example
    • PMID: 27865923
    • Abraham A, Milham MP, Di Martino A, Craddock RC, Samaras D, Thirion B, et al. Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example. NeuroImage. 2017; 147:736-745. https://doi.org/10.1016/j.neuroimage.2016.10.045 PMID: 27865923
    • (2017) NeuroImage , vol.147 , pp. 736-745
    • Abraham, A.1    Milham, M.P.2    Di Martino, A.3    Craddock, R.C.4    Samaras, D.5    Thirion, B.6
  • 42
    • 77954676863 scopus 로고    scopus 로고
    • Permutation tests for studying classifier performance
    • Jun
    • Ojala M, Garriga GC. Permutation Tests for Studying Classifier Performance. Journal of Machine Learning Research. 2010; 11(Jun):1833-1863.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1833-1863
    • Ojala, M.1    Garriga, G.C.2
  • 43
    • 49049113457 scopus 로고    scopus 로고
    • Automated quality control of brain MR images
    • PMID: 18666143
    • Gedamu EL, Collins Dl, Arnold DL. Automated quality control of brain MR images. Journal of Magnetic Resonance Imaging. 2008; 28(2):308-319. https://doi.org/10.1002/jmri.21434 PMID: 18666143
    • (2008) Journal of Magnetic Resonance Imaging , vol.28 , Issue.2 , pp. 308-319
    • Gedamu, E.L.1    Dl, C.2    Arnold, D.L.3
  • 44
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • Lake Tahoe, Nevada, USA
    • Snoek J, Larochelle H, Adams RP. Practical Bayesian Optimization of Machine Learning Algorithms. In: Advances in Neural Information Processing Systems. vol. 25. Lake Tahoe, Nevada, USA; 2012. p. 2951-2959.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2951-2959
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 45
    • 33749252873 scopus 로고    scopus 로고
    • A discussion of semi-supervised learning and transductive
    • Cambridge, Massachusetts, US: MIT Press
    • Bengio Y, Delalleau O, Roux NL. A discussion of semi-supervised learning and transductive. Semi-Supervised Learning. Cambridge, Massachusetts, US: MIT Press; 2006.
    • (2006) Semi-Supervised Learning
    • Bengio, Y.1    Delalleau, O.2    Roux, N.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.