-
1
-
-
85019233343
-
Variable rate image compression with recurrent neural networks
-
G. Toderici, S. M. O'Malley, S. J. Hwang, D. Vincent, D. Minnen, S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image compression with recurrent neural networks,” International Conference on Learning Representations (ICLR), 2015.
-
(2015)
International Conference on Learning Representations (ICLR)
-
-
Toderici, G.1
O'Malley, S.M.2
Hwang, S.J.3
Vincent, D.4
Minnen, D.5
Baluja, S.6
Covell, M.7
Sukthankar, R.8
-
2
-
-
85042111535
-
Full resolution image compression with recurrent neural networks
-
G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and M. Covell, “Full resolution image compression with recurrent neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5435-5443, 2017.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 5435-5443
-
-
Toderici, G.1
Vincent, D.2
Johnston, N.3
Hwang, S.J.4
Minnen, D.5
Shor, J.6
Covell, M.7
-
3
-
-
85088225541
-
Lossy image compression with compressive autoencoders
-
L. Theis, W. Shi, A. Cunningham, and F. Huszar, “Lossy image compression with compressive autoencoders,” in International Conference on Learning Representations (ICLR), 2017.
-
(2017)
International Conference on Learning Representations (ICLR)
-
-
Theis, L.1
Shi, W.2
Cunningham, A.3
Huszar, F.4
-
6
-
-
85047016361
-
Soft-to-hard vector quantization for end-to-end learning compressible representations
-
E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, and L. V. Gool, “Soft-to-hard vector quantization for end-to-end learning compressible representations,” in Advances in Neural Information Processing Systems (NIPS), pp. 1141-1151, 2017.
-
(2017)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1141-1151
-
-
Agustsson, E.1
Mentzer, F.2
Tschannen, M.3
Cavigelli, L.4
Timofte, R.5
Benini, L.6
Gool, L.V.7
-
7
-
-
85042090077
-
-
N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. Chinen, S. Jin Hwang, J. Shor, and G. Toderici, “Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks,” arXiv:1703.10114, 2017.
-
(2017)
Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks
-
-
Johnston, N.1
Vincent, D.2
Minnen, D.3
Covell, M.4
Singh, S.5
Chinen, T.6
Jin Hwang, S.7
Shor, J.8
Toderici, G.9
-
8
-
-
85061314410
-
Learning convolutional networks for content-weighted image compression
-
M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convolutional networks for content-weighted image compression,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3214-3223, 2018.
-
(2018)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3214-3223
-
-
Li, M.1
Zuo, W.2
Gu, S.3
Zhao, D.4
Zhang, D.5
-
9
-
-
85055446033
-
Conditional probability models for deep image compression
-
F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool, “Conditional probability models for deep image compression,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4394-4402, 2018.
-
(2018)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 4394-4402
-
-
Mentzer, F.1
Agustsson, E.2
Tschannen, M.3
Timofte, R.4
Van Gool, L.5
-
10
-
-
85083952645
-
Variational image compression with a scale hyperprior
-
J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image compression with a scale hyperprior,” in International Conference on Learning Representations (ICLR), 2018.
-
(2018)
International Conference on Learning Representations (ICLR)
-
-
Ballé, J.1
Minnen, D.2
Singh, S.3
Hwang, S.J.4
Johnston, N.5
-
13
-
-
85083952355
-
Towards image understanding from deep compression without decoding
-
R. Torfason, F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, “Towards image understanding from deep compression without decoding,” in International Conference on Learning Representations (ICLR), 2018.
-
(2018)
International Conference on Learning Representations (ICLR)
-
-
Torfason, R.1
Mentzer, F.2
Agustsson, E.3
Tschannen, M.4
Timofte, R.5
Gool, L.V.6
-
14
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems (NIPS), pp. 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
15
-
-
85055140008
-
-
E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. Van Gool, “Generative adversarial networks for extreme learned image compression,” arXiv:1804.02958, 2018.
-
(2018)
Generative Adversarial Networks for Extreme Learned Image Compression
-
-
Agustsson, E.1
Tschannen, M.2
Mentzer, F.3
Timofte, R.4
Van Gool, L.5
-
16
-
-
85047016172
-
Wasserstein generative adversarial networks
-
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in Proceedings of the International Conference on Machine Learning (ICML), pp. 214-223, 2017.
-
(2017)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 214-223
-
-
Arjovsky, M.1
Chintala, S.2
Bottou, L.3
-
17
-
-
85083952476
-
Wasserstein auto-encoders
-
I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein auto-encoders,” in International Conference on Learning Representations (ICLR), 2018.
-
(2018)
International Conference on Learning Representations (ICLR)
-
-
Tolstikhin, I.1
Bousquet, O.2
Gelly, S.3
Schoelkopf, B.4
-
18
-
-
85041020882
-
GANs trained by a two time-scale update rule converge to a local Nash equilibrium
-
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two time-scale update rule converge to a local Nash equilibrium,” in Advances in Neural Information Processing Systems (NIPS), pp. 6629-6640, 2017.
-
(2017)
Advances in Neural Information Processing Systems (NIPS)
, pp. 6629-6640
-
-
Heusel, M.1
Ramsauer, H.2
Unterthiner, T.3
Nessler, B.4
Hochreiter, S.5
-
19
-
-
84973917446
-
Deep learning face attributes in the wild
-
Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3730-3738, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
, pp. 3730-3738
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
20
-
-
84979976120
-
-
F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop,” arXiv:1506.03365, 2015.
-
(2015)
LSUN: Construction of a Large-Scale Image Dataset Using Deep Learning with Humans in the Loop
-
-
Yu, F.1
Seff, A.2
Zhang, Y.3
Song, S.4
Funkhouser, T.5
Xiao, J.6
-
21
-
-
85041892358
-
Unpaired image-to-image translation using cycle-consistent adversarial networks
-
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2223-2232, 2017.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2223-2232
-
-
Zhu, J.-Y.1
Park, T.2
Isola, P.3
Efros, A.A.4
-
23
-
-
85046999558
-
Toward multimodal image-to-image translation
-
J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman, “Toward multimodal image-to-image translation,” in Advances in Neural Information Processing Systems (NIPS), pp. 465-476, 2017.
-
(2017)
Advances in Neural Information Processing Systems (NIPS)
, pp. 465-476
-
-
Zhu, J.-Y.1
Zhang, R.2
Pathak, D.3
Darrell, T.4
Efros, A.A.5
Wang, O.6
Shechtman, E.7
-
27
-
-
84859477054
-
A kernel two-sample test
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-sample test,” Journal of Machine Learning Research, vol. 13, pp. 723-773, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
28
-
-
85047004943
-
Improved training of Wasserstein GANs
-
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of Wasserstein GANs,” in Advances in Neural Information Processing Systems (NIPS), pp. 5769-5779, 2017.
-
(2017)
Advances in Neural Information Processing Systems (NIPS)
, pp. 5769-5779
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.C.5
-
29
-
-
85063266387
-
Are Gans created equal? A large-scale study
-
M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are GANs Created Equal? A Large-Scale Study,” in Advances in Neural Information Processing Systems (NeurIPS), 2018.
-
(2018)
Advances in Neural Information Processing Systems (NeurIPS)
-
-
Lucic, M.1
Kurach, K.2
Michalski, M.3
Gelly, S.4
Bousquet, O.5
-
31
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
32
-
-
84959532025
-
-
accessed 26 June 2018
-
F. Bellard, “BPG Image format.” https://bellard.org/bpg/, 2018. accessed 26 June 2018.
-
(2018)
BPG Image Format
-
-
Bellard, F.1
-
34
-
-
85053865136
-
Generative compression
-
S. Santurkar, D. Budden, and N. Shavit, “Generative compression,” in Picture Coding Symposium (PCS), pp. 258-262, 2018.
-
(2018)
Picture Coding Symposium (PCS)
, pp. 258-262
-
-
Santurkar, S.1
Budden, D.2
Shavit, N.3
-
35
-
-
85041921723
-
Deep generative adversarial compression artifact removal
-
L. Galteri, L. Seidenari, M. Bertini, and A. Del Bimbo, “Deep generative adversarial compression artifact removal,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4826-4835, 2017.
-
(2017)
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
, pp. 4826-4835
-
-
Galteri, L.1
Seidenari, L.2
Bertini, M.3
Del Bimbo, A.4
-
36
-
-
85035231525
-
Photo-realistic single image super-resolution using a generative adversarial network
-
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4681-4690, 2017.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 4681-4690
-
-
Ledig, C.1
Theis, L.2
Huszar, F.3
Caballero, J.4
Cunningham, A.5
Acosta, A.6
Aitken, A.7
Tejani, A.8
Totz, J.9
Wang, Z.10
Shi, W.11
-
37
-
-
85019177115
-
Towards conceptual compression
-
K. Gregor, F. Besse, D. J. Rezende, I. Danihelka, and D. Wierstra, “Towards conceptual compression,” in Advances in Neural Information Processing Systems (NIPS), pp. 3549-3557, 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
, pp. 3549-3557
-
-
Gregor, K.1
Besse, F.2
Rezende, D.J.3
Danihelka, I.4
Wierstra, D.5
-
38
-
-
84990062230
-
-
A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond pixels using a learned similarity metric,” arXiv:1512.09300, 2015.
-
(2015)
Autoencoding Beyond Pixels Using a Learned Similarity Metric
-
-
Larsen, A.B.L.1
Sønderby, S.K.2
Larochelle, H.3
Winther, O.4
-
40
-
-
85041900982
-
Adversarially learned inference
-
V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville, “Adversarially learned inference,” in International Conference on Learning Representations (ICLR), 2017.
-
(2017)
International Conference on Learning Representations (ICLR)
-
-
Dumoulin, V.1
Belghazi, I.2
Poole, B.3
Mastropietro, O.4
Lamb, A.5
Arjovsky, M.6
Courville, A.7
-
42
-
-
85038027673
-
-
M. Rosca, B. Lakshminarayanan, D. Warde-Farley, and S. Mohamed, “Variational approaches for auto-encoding generative adversarial networks,” arXiv:1706.04987, 2017.
-
(2017)
Variational Approaches for Auto-Encoding Generative Adversarial Networks
-
-
Rosca, M.1
Lakshminarayanan, B.2
Warde-Farley, D.3
Mohamed, S.4
-
43
-
-
0026255856
-
Moment preserving quantization (signal processing)
-
E. J. Delp and O. R. Mitchell, “Moment preserving quantization (signal processing),” IEEE Transactions on Communications, vol. 39, no. 11, pp. 1549-1558, 1991.
-
(1991)
IEEE Transactions on Communications
, vol.39
, Issue.11
, pp. 1549-1558
-
-
Delp, E.J.1
Mitchell, O.R.2
-
44
-
-
78149459675
-
Distribution preserving quantization with dithering and transformation
-
M. Li, J. Klejsa, and W. B. Kleijn, “Distribution preserving quantization with dithering and transformation,” IEEE Signal Processing Letters, vol. 17, no. 12, pp. 1014-1017, 2010.
-
(2010)
IEEE Signal Processing Letters
, vol.17
, Issue.12
, pp. 1014-1017
-
-
Li, M.1
Klejsa, J.2
Kleijn, W.B.3
-
45
-
-
0037147356
-
Functional quantization of Gaussian processes
-
H. Luschgy and G. Pagès, “Functional quantization of Gaussian processes,” Journal of Functional Analysis, vol. 196, no. 2, pp. 486-531, 2002.
-
(2002)
Journal of Functional Analysis
, vol.196
, Issue.2
, pp. 486-531
-
-
Luschgy, H.1
Pagès, G.2
|