-
1
-
-
85047021116
-
-
3
-
E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, and L. Van Gool. Soft-to-hard vector quantization for end-to-end learned compression of images and neural networks. arXiv preprint arXiv:1704. 00648, 2017. 3
-
(2017)
Soft-to-hard Vector Quantization for End-to-end Learned Compression of Images and Neural Networks
-
-
Agustsson, E.1
Mentzer, F.2
Tschannen, M.3
Cavigelli, L.4
Timofte, R.5
Benini, L.6
Van Gool, L.7
-
3
-
-
85027466317
-
-
1, 2, 3, 4, 6, 7, 8
-
J. Ballé, V. Laparra, and E. P. Simoncelli. Endto-end optimized image compression. arXiv preprint arXiv:1611. 01704, 2016. 1, 2, 3, 4, 6, 7, 8
-
(2016)
Endto-end Optimized Image Compression
-
-
Ballé, J.1
Laparra, V.2
Simoncelli, E.P.3
-
4
-
-
84988920420
-
-
2, 3, 4
-
M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602. 02830, 2016. 2, 3, 4
-
(2016)
Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained To+ 1 or-1
-
-
Courbariaux, M.1
Hubara, I.2
Soudry, D.3
El-Yaniv, R.4
Bengio, Y.5
-
5
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
IEEE 2, 6
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009. 2, 6
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
6
-
-
84973866806
-
Compression artifacts reduction by a deep convolutional network
-
3
-
C. Dong, Y. Deng, C. Change Loy, and X. Tang. Compression artifacts reduction by a deep convolutional network. In Proceedings of the IEEE International Conference on Computer Vision, pages 576-584, 2015. 3
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 576-584
-
-
Dong, C.1
Deng, Y.2
Change Loy, C.3
Tang, X.4
-
7
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
Springer 1
-
C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, pages 184-199. Springer, 2014. 1
-
(2014)
ECCV
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
8
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
1
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014. 1
-
(2014)
CVPR
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
9
-
-
84986274465
-
Deep residual learning for image recognition
-
3
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770-778, 2016. 3
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
85055864398
-
An end-to-end compression framework based on convolutional neural networks
-
3
-
F. Jiang, W. Tao, S. Liu, J. Ren, X. Guo, and D. Zhao. An end-to-end compression framework based on convolutional neural networks. IEEE Transactions on Circuits and Systems for Video Technology, 2017. 3
-
(2017)
IEEE Transactions on Circuits and Systems for Video Technology
-
-
Jiang, F.1
Tao, W.2
Liu, S.3
Ren, J.4
Guo, X.5
Zhao, D.6
-
12
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
1
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012. 1
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
13
-
-
85030237937
-
Enhanced deep residual networks for single image super-resolution
-
1, 3
-
B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced deep residual networks for single image super-resolution. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2017. 1, 3
-
(2017)
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
-
-
Lim, B.1
Son, S.2
Kim, H.3
Nah, S.4
Lee, K.M.5
-
14
-
-
0042631513
-
Context-based adaptive binary arithmetic coding in the h. 264/avc video compression standard
-
2, 5
-
D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic coding in the h. 264/avc video compression standard. IEEE Transactions on circuits and systems for video technology, 13(7):620-636, 2003. 2, 5
-
(2003)
IEEE Transactions on Circuits and Systems for Video Technology
, vol.13
, Issue.7
, pp. 620-636
-
-
Marpe, D.1
Schwarz, H.2
Wiegand, T.3
-
17
-
-
85020031445
-
Semantic perceptual image compression using deep convolution networks
-
IEEE 3
-
A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer. Semantic perceptual image compression using deep convolution networks. In Data Compression Conference (DCC), 2017, pages 250-259. IEEE, 2017. 3
-
(2017)
Data Compression Conference (DCC) 2017
, pp. 250-259
-
-
Prakash, A.1
Moran, N.2
Garber, S.3
DiLillo, A.4
Storer, J.5
-
18
-
-
84990055874
-
Xnornet: Imagenet classification using binary convolutional neural networks
-
Springer 2, 4
-
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnornet: Imagenet classification using binary convolutional neural networks. In European Conference on Computer Vision, pages 525-542. Springer, 2016. 2, 4
-
(2016)
European Conference on Computer Vision
, pp. 525-542
-
-
Rastegari, M.1
Ordonez, V.2
Redmon, J.3
Farhadi, A.4
-
20
-
-
84956634252
-
Efficient regression priors for reducing image compression artifacts
-
IEEE 3
-
R. Rothe, R. Timofte, and L. Van Gool. Efficient regression priors for reducing image compression artifacts. In Image Processing (ICIP), 2015 IEEE International Conference on, pages 1543-1547. IEEE, 2015. 3
-
(2015)
Image Processing (ICIP), 2015 IEEE International Conference on
, pp. 1543-1547
-
-
Rothe, R.1
Timofte, R.2
Van Gool, L.3
-
21
-
-
0035445526
-
The jpeg 2000 still image compression standard
-
1, 3, 6
-
A. Skodras, C. Christopoulos, and T. Ebrahimi. The jpeg 2000 still image compression standard. IEEE Signal processing magazine, 18(5):36-58, 2001. 1, 3, 6
-
(2001)
IEEE Signal Processing Magazine
, vol.18
, Issue.5
, pp. 36-58
-
-
Skodras, A.1
Christopoulos, C.2
Ebrahimi, T.3
-
23
-
-
85088225541
-
-
1, 3, 4
-
L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy image compression with compressive autoencoders. arXiv preprint arXiv:1703. 00395, 2017. 1, 3, 4
-
(2017)
Lossy Image Compression with Compressive Autoencoders
-
-
Theis, L.1
Shi, W.2
Cunningham, A.3
Huszár, F.4
-
25
-
-
85030454083
-
-
1, 3
-
G. Toderici, S. M. O'Malley, S. J. Hwang, D. Vincent, D. Minnen, S. Baluja, M. Covell, and R. Sukthankar. Variable rate image compression with recurrent neural networks. arXiv preprint arXiv:1511. 06085, 2015. 1, 3
-
(2015)
Variable Rate Image Compression with Recurrent Neural Networks
-
-
Toderici, G.1
O'Malley, S.M.2
Hwang, S.J.3
Vincent, D.4
Minnen, D.5
Baluja, S.6
Covell, M.7
Sukthankar, R.8
-
26
-
-
85031418228
-
-
1, 3, 4
-
G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and M. Covell. Full resolution image compression with recurrent neural networks. arXiv preprint arXiv:1608. 05148, 2016. 1, 3, 4
-
(2016)
Full Resolution Image Compression with Recurrent Neural Networks
-
-
Toderici, G.1
Vincent, D.2
Johnston, N.3
Hwang, S.J.4
Minnen, D.5
Shor, J.6
Covell, M.7
-
27
-
-
0026818192
-
The jpeg still picture compression standard
-
1, 2, 6
-
G. K. Wallace. The jpeg still picture compression standard. IEEE transactions on consumer electronics, 38(1):xviii-xxxiv, 1992. 1, 2, 6
-
(1992)
IEEE Transactions on Consumer Electronics
, vol.38
, Issue.1
, pp. xviii-xxxiv
-
-
Wallace, G.K.1
-
28
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
7
-
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600-612, 2004. 7
-
(2004)
IEEE Transactions on Image Processing
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
29
-
-
4143089652
-
Multiscale structural similarity for image quality assessment
-
IEEE 7
-
Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality assessment. In Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on, volume 2, pages 1398-1402. Ieee, 2003. 7
-
(2003)
Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on
, vol.2
, pp. 1398-1402
-
-
Wang, Z.1
Simoncelli, E.P.2
Bovik, A.C.3
-
30
-
-
0023364261
-
Arithmetic coding for data compression
-
5
-
I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression. Communications of the ACM, 30(6):520-540, 1987. 5
-
(1987)
Communications of the ACM
, vol.30
, Issue.6
, pp. 520-540
-
-
Witten, I.H.1
Neal, R.M.2
Cleary, J.G.3
-
31
-
-
84877728447
-
Image denoising and inpainting with deep neural networks
-
1
-
J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural networks. In NIPS, pages 341-349, 2012. 1
-
(2012)
NIPS
, pp. 341-349
-
-
Xie, J.1
Xu, L.2
Chen, E.3
-
32
-
-
22644437659
-
Just noticeable distortion model and its applications in video coding
-
2, 5
-
X. Yang, W. Ling, Z. Lu, E. P. Ong, and S. Yao. Just noticeable distortion model and its applications in video coding. Signal Processing: Image Communication, 20(7):662-680, 2005. 2, 5
-
(2005)
Signal Processing: Image Communication
, vol.20
, Issue.7
, pp. 662-680
-
-
Yang, X.1
Ling, W.2
Lu, Z.3
Ong, E.P.4
Yao, S.5
-
33
-
-
85021724055
-
Beyond a Gayesian denoiser: Residual learning of deep cnn for image denoising
-
1
-
K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gayesian denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on Image Processing, 2017. 1
-
(2017)
IEEE Transactions on Image Processing
-
-
Zhang, K.1
Zuo, W.2
Chen, Y.3
Meng, D.4
Zhang, L.5
-
34
-
-
85023600253
-
-
2, 4
-
S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606. 06160, 2016. 2, 4
-
(2016)
Dorefa-net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
-
-
Zhou, S.1
Wu, Y.2
Ni, Z.3
Zhou, X.4
Wen, H.5
Zou, Y.6
|