메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Variational image compression with a scale hyperprior

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 85083952645     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1872)

References (28)
  • 1
    • 85057335322 scopus 로고    scopus 로고
    • Soft-to-hard vector quantization for end-to-end learning compressible representations
    • Ágústsson, Eiríkur Þór et al. (2017). “Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations”. In: Advances in Neural Information Processing Systems 30, pp. 1141–1151.
    • (2017) Advances in Neural Information Processing Systems , vol.30 , pp. 1141-1151
    • Ágústsson, E.Þ.1
  • 2
    • 85052331289 scopus 로고    scopus 로고
    • Testimages: A large-scale archive for testing visual devices and basic image processing algorithms
    • Asuni, N. and A. Giachetti (2014). “TESTIMAGES: A large-scale archive for testing visual devices and basic image processing algorithms”. In: Proc. of STAG: Smart Tools and Apps for Graphics.
    • (2014) Proc. Of STAG: Smart Tools and Apps for Graphics
    • Asuni, N.1    Giachetti, A.2
  • 3
    • 85013477758 scopus 로고    scopus 로고
    • Multiple hypothesis colorization and its application to image compression
    • Baig, Mohammad Haris and Lorenzo Torresani (2017). “Multiple hypothesis colorization and its application to image compression”. In: Computer Vision and Image Understanding 164. DOI: 10.1016/j.cviu.2017.01.010.
    • (2017) Computer Vision and Image Understanding , vol.164
    • Baig, M.H.1    Torresani, L.2
  • 4
    • 85083951049 scopus 로고    scopus 로고
    • Density modeling of images using a generalized normalization transformation
    • arXiv e-prints.
    • Ballé, Johannes, Valero Laparra, and Eero P. Simoncelli (2016a). “Density Modeling of Images Using a Generalized Normalization Transformation”. In: arXiv e-prints. Presented at the 4th Int. Conf. on Learning Representations. arXiv: 1511.06281.
    • (2016) The 4th Int. Conf. On Learning Representations
    • Ballé, J.1    Laparra, V.2    Simoncelli, E.P.3
  • 5
    • 85019408669 scopus 로고    scopus 로고
    • End-to-end optimization of nonlinear transform codes for perceptual quality
    • 2016
    • – (2016b). “End-to-end optimization of nonlinear transform codes for perceptual quality”. In: Picture Coding Symposium (PCS), 2016. DOI: 10.1109/PCS.2016.7906310. arXiv: 1607. 05006.
    • (2016) Picture Coding Symposium (PCS)
  • 6
    • 85080557228 scopus 로고    scopus 로고
    • End-to-end optimized image compression
    • arXiv preprint
    • – (2017). “End-to-end Optimized Image Compression”. In: arXiv e-prints. Presented at the 5th Int. Conf. on Learning Representations. arXiv: 1611.01704.
    • (2017) The 5th Int. Conf. On Learning Representations
  • 7
    • 84959532025 scopus 로고    scopus 로고
    • Accessed: 2017-01-30. URL
    • Bellard, Fabrice (2014). BPG Image Format. Accessed: 2017-01-30. URL: http://bellard.org/bpg/.
    • (2014) BPG Image Format
    • Bellard, F.1
  • 8
    • 0012479268 scopus 로고    scopus 로고
    • Latent variable models
    • MIT Press
    • Bishop, Christopher M. (1999). “Latent variable models”. In: Learning in Graphical Models. MIT Press, pp. 371–403.
    • (1999) Learning in Graphical Models , pp. 371-403
    • Bishop, C.M.1
  • 9
    • 8344285779 scopus 로고    scopus 로고
    • Dependence, correlation and Gaussianity in independent component analysis
    • Cardoso, Jean-François (2003). “Dependence, Correlation and Gaussianity in Independent Component Analysis”. In: Journal of Machine Learning Research 4, pp. 1177–1203.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 1177-1203
    • Cardoso, J.-F.1
  • 11
    • 85032752137 scopus 로고    scopus 로고
    • Theoretical foundations of transform coding
    • Goyal, Vivek K. (2001). “Theoretical Foundations of Transform Coding”. In: IEEE Signal Processing Magazine 18.5. DOI: 10.1109/79.952802.
    • (2001) IEEE Signal Processing Magazine , vol.18 , pp. 5
    • Goyal, V.K.1
  • 16
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • arXiv preprint
    • Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”. In: arXiv e-prints. Presented at the 3rd Int. Conf. on Learning Representations. arXiv: 1412.6980.
    • (2015) The 3rd Int. Conf. On Learning Representations
    • Kingma, D.P.1    Ba, J.2
  • 18
    • 62249200514 scopus 로고    scopus 로고
    • Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures
    • Lyu, Siwei and Eero P. Simoncelli (2009). “Modeling Multiscale Subbands of Photographic Images with Fields of Gaussian Scale Mixtures”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 31.4. DOI: 10.1109/TPAMI.2008.107.
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , pp. 4
    • Lyu, S.1    Simoncelli, E.P.2
  • 19
    • 85045461453 scopus 로고    scopus 로고
    • Real-time adaptive image compression
    • Rippel, Oren and Lubomir Bourdev (2017). “Real-Time Adaptive Image Compression”. In: Proc. of Machine Learning Research. Vol. 70, pp. 2922–2930.
    • (2017) Proc. Of Machine Learning Research. , vol.70 , pp. 2922-2930
    • Rippel, O.1    Bourdev, L.2
  • 24
    • 85041213069 scopus 로고    scopus 로고
    • Lossy image compression with compressive autoencoders
    • arXiv preprint
    • Theis, Lucas et al. (2017). “Lossy Image Compression with Compressive Autoencoders”. In: arXiv e-prints. Presented at the 5th Int. Conf. on Learning Representations. arXiv: 1703.00395.
    • (2017) The 5th Int. Conf. On Learning Representations
    • Theis, L.1
  • 25
    • 85042111535 scopus 로고    scopus 로고
    • Full resolution image compression with recurrent neural networks
    • arXiv preprint
    • Toderici, George et al. (2017). “Full Resolution Image Compression with Recurrent Neural Networks”. In: 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). DOI: 10. 1109/CVPR.2017.577. arXiv: 1608.05148.
    • (2017) 2017 IEEE Conf. On Computer Vision and Pattern Recognition (CVPR)
    • Toderici, G.1
  • 27
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Wang, Zhou, Alan Conrad Bovik, et al. (2004). “Image Quality Assessment: From Error Visibility to Structural Similarity”. In: IEEE Transactions on Image Processing 13.4. DOI: 10.1109/TIP. 2003.819861.
    • (2004) IEEE Transactions on Image Processing , vol.13 , pp. 4
    • Wang, Z.1    Bovik, A.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.