-
4
-
-
85051023613
-
-
O. Bousquet, S. Gelly, I. Tolstikhin, C. J. Simon-Gabriel, and B. Schölkopf. From optimal transport to generative modeling: the VEGAN cookbook, 2017.
-
(2017)
From Optimal Transport to Generative Modeling: The VEGAN Cookbook
-
-
Bousquet, O.1
Gelly, S.2
Tolstikhin, I.3
Simon-Gabriel, C.J.4
Schölkopf, B.5
-
6
-
-
84897052697
-
Sinkhorn distances: Lightspeed computation of optimal transport
-
M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pp. 2292–2300, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2292-2300
-
-
Cuturi, M.1
-
7
-
-
85041900982
-
Adversarially learned inference
-
V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and A. Courville. Adversarially learned inference. In ICLR, 2017.
-
(2017)
ICLR
-
-
Dumoulin, V.1
Belghazi, I.2
Poole, B.3
Lamb, A.4
Arjovsky, M.5
Mastropietro, O.6
Courville, A.7
-
8
-
-
84983185824
-
Training generative neural networks via maximum mean discrepancy optimization
-
G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum mean discrepancy optimization. In UAI, 2015.
-
(2015)
UAI
-
-
Dziugaite, G.K.1
Roy, D.M.2
Ghahramani, Z.3
-
9
-
-
85019185445
-
Stochastic optimization for large-scale optimal transport
-
A. Genevay, M. Cuturi, G. Peyré, and F. R. Bach. Stochastic optimization for large-scale optimal transport. In Advances in Neural Information Processing Systems, pp. 3432–3440, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3432-3440
-
-
Genevay, A.1
Cuturi, M.2
Peyré, G.3
Bach, F.R.4
-
10
-
-
84937849144
-
Generative adversarial nets
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pp. 2672–2680, 2014.
-
(2014)
NIPS
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
11
-
-
84859477054
-
A kernel two-sample test
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A kernel two-sample test. Journal of Machine Learning Research, 13:723–773, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.J.5
-
12
-
-
85047004943
-
-
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Domoulin, and A. Courville. Improved training of wasser-stein GANs, 2017.
-
(2017)
Improved Training of Wasser-Stein GANs
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Domoulin, V.4
Courville, A.5
-
13
-
-
85049562159
-
-
arXiv preprint
-
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and Sepp Hochreiter. GANs trained by a two time-scale update rule converge to a nash equilibrium. arXiv preprint arXiv:1706.08500, 2017.
-
(2017)
GANs Trained by A Two Time-Scale Update Rule Converge to A Nash Equilibrium
-
-
Heusel, M.1
Ramsauer, H.2
Unterthiner, T.3
Nessler, B.4
Klambauer, G.5
Hochreiter, S.6
-
17
-
-
85083952489
-
Auto-encoding variational Bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
18
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, volume 86(11), pp. 2278–2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
19
-
-
85046995774
-
-
C. L. Li, W. C. Chang, Y. Cheng, Y. Yang, and B. Poczos. Mmd gan: Towards deeper understanding of moment matching network, 2017.
-
(2017)
Mmd Gan: Towards Deeper Understanding of Moment Matching Network
-
-
Li, C.L.1
Chang, W.C.2
Cheng, Y.3
Yang, Y.4
Poczos, B.5
-
20
-
-
84970016114
-
Generative moment matching networks
-
Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In ICML, 2015.
-
(2015)
ICML
-
-
Li, Y.1
Swersky, K.2
Zemel, R.3
-
26
-
-
85018914753
-
F-GaN: Training generative neural samplers using variational divergence minimization
-
Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. In NIPS, 2016.
-
(2016)
NIPS
-
-
Nowozin, S.1
Cseke, B.2
Tomioka, R.3
-
28
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
29
-
-
84965162267
-
On the high-dimensional power of a linear-time two sample test under mean-shift alternatives
-
R. Reddi, A. Ramdas, A. Singh, B. Poczos, and L. Wasserman. On the high-dimensional power of a linear-time two sample test under mean-shift alternatives. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Reddi, R.1
Ramdas, A.2
Singh, A.3
Poczos, B.4
Wasserman, L.5
-
32
-
-
85087518435
-
Energy-based generative adversarial network
-
J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR, 2017a.
-
(2017)
ICLR
-
-
Zhao, J.1
Mathieu, M.2
LeCun, Y.3
|