-
1
-
-
0001841122
-
On the computational complexity of approximating distributions by probabilistic automata
-
Abe, N. and Warmuth, M. K. On the computational complexity of approximating distributions by probabilistic automata. Machine Learning, 9(2-3):205-260, 1992.
-
(1992)
Machine Learning
, vol.9
, Issue.2-3
, pp. 205-260
-
-
Abe, N.1
Warmuth, M.K.2
-
2
-
-
4544310407
-
Approximating the cut-norm via Grothendieck's inequality
-
Alon, N. and Naor, A. Approximating the cut-norm via Grothendieck's inequality. In STOC, pp. 72-80, 2004.
-
(2004)
STOC
, pp. 72-80
-
-
Alon, N.1
Naor, A.2
-
4
-
-
67651049775
-
Justifying and generalizing contrastive divergence
-
Bengio, Y. and Delalleau, O. Justifying and generalizing contrastive divergence. Neural Computation, 21 (6):1601-1621, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.6
, pp. 1601-1621
-
-
Bengio, Y.1
Delalleau, O.2
-
5
-
-
51849151948
-
The complexity of distinguishing markov random fields
-
Bogdanov, A., Mossel, E., and Vadhan, S. P. The complexity of distinguishing markov random fields. In APPROX-RANDOM, pp. 331-342, 2008.
-
(2008)
APPROX-RANDOM
, pp. 331-342
-
-
Bogdanov, A.1
Mossel, E.2
Vadhan, S.P.3
-
6
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
To appear
-
Erhan, D., Bengio, Y., Courville, A., Manzagol, P., Vincent, P., and Bengio, S. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research. To appear.
-
Journal of Machine Learning Research
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.4
Vincent, P.5
Bengio, S.6
-
7
-
-
0345368881
-
Unsupervised learning of distributions of binary vectors using 2-layer networks
-
Freund, Y. and Haussler, D. Unsupervised learning of distributions of binary vectors using 2-layer networks. In NIPS, pp. 912-919, 1991.
-
(1991)
NIPS
, pp. 912-919
-
-
Freund, Y.1
Haussler, D.2
-
8
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
9
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., and Teh, Y. W. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
10
-
-
38249043088
-
Random generation of combinatorial structures from a uniform distribution
-
Jerrum, M., Valiant, L. G., and Vazirani, V. V. Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci, 43:169-188, 1986.
-
(1986)
Theor. Comput. Sci
, vol.43
, pp. 169-188
-
-
Jerrum, M.1
Valiant, L.G.2
Vazirani, V.V.3
-
11
-
-
0028098408
-
On the learnability of discrete distributions
-
Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R., and Sellie, L. On the learnability of discrete distributions. In Proc. of Twenty-sixth ACM Symposium on Theory of Computing, pp. 273-282, 1994.
-
(1994)
Proc. of Twenty-sixth ACM Symposium on Theory of Computing
, pp. 273-282
-
-
Kearns, M.1
Mansour, Y.2
Ron, D.3
Rubinfeld, R.4
Schapire, R.5
Sellie, L.6
-
12
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Larochelle, H., Erhan, D., Courville, A. C., Bergstra, J., and Bengio, Y. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, pp. 473-480, 2007.
-
(2007)
ICML
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.C.3
Bergstra, J.4
Bengio, Y.5
-
13
-
-
0030120958
-
On the hardness of approximate reasoning
-
Roth, D. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273-302, 1996.
-
(1996)
Artificial Intelligence
, vol.82
, Issue.1-2
, pp. 273-302
-
-
Roth, D.1
-
14
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
Rumel-hart, D. E. McClelland, J. L. et al. (eds.), MIT Press, Cambridge
-
Smolensky, P. Information processing in dynamical systems: Foundations of harmony theory. In Rumel-hart, D. E., McClelland, J. L., et al. (eds.), Parallel Distributed Processing: Volume 1: Foundations, pp. 194-281. MIT Press, Cambridge, 1987.
-
(1987)
Parallel Distributed Processing: Volume 1: Foundations
, pp. 194-281
-
-
Smolensky, P.1
-
15
-
-
70449555200
-
Approximate learning algorithm for restricted boltzmann machines
-
Yasuda, M. and Tanaka, K. Approximate learning algorithm for restricted boltzmann machines. In CIMCA/IAWTIC/ISE, pp. 692-697, 2008.
-
(2008)
CIMCA/IAWTIC/ISE
, pp. 692-697
-
-
Yasuda, M.1
Tanaka, K.2
|