-
1
-
-
85065040818
-
-
http://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html.
-
-
-
-
2
-
-
84959367102
-
Middle east respiratory syndrome coronavirus (MERS-CoV): animal to human interaction
-
Omrani, A. S., J. A., Al-Tawfiq, and Z. A., Memish. 2015. Middle east respiratory syndrome coronavirus (MERS-CoV): animal to human interaction. Pathog. Glob. Health. 109:354–362. doi: 10.1080/20477724.2015.1122852.
-
(2015)
Pathog. Glob. Health
, vol.109
, pp. 354-362
-
-
Omrani, A.S.1
Al-Tawfiq, J.A.2
Memish, Z.A.3
-
3
-
-
84903435220
-
Evidence for camel-to-human transmission of MERS coronavirus
-
Azhar, E. I., S. A., El-Kafrawy, S. A., Farraj, A. M., Hassan, M. S., Al-Saeed, A. M., Hashem, and T. A., Madani. 2014. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 370:2499–2505. doi: 10.1056/NEJMoa1401505.
-
(2014)
N. Engl. J. Med
, vol.370
, pp. 2499-2505
-
-
Azhar, E.I.1
El-Kafrawy, S.A.2
Farraj, S.A.3
Hassan, A.M.4
Al-Saeed, M.S.5
Hashem, A.M.6
Madani, T.A.7
-
4
-
-
84892538696
-
Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation
-
Haagmans, B. L., S. H., Al Dhahiry, C. B., Reusken, V. S., Raj, M., Galiano, R., Myers, G. J., Godeke, M., Jonges, E., Farag, A., Diab, H., Ghobashy, F., Alhajri, M., Al-Thani, S. A., Al-Marri, H. E., Al Romaihi, A., Al Khal, A., Bermingham, A. D., Osterhaus, M. M., AlHajri, and M. P., Koopmans. 2014. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect. Dis. 14:140–145. doi: 10.1016/S1473-3099(13)70690-X.
-
(2014)
Lancet Infect. Dis
, vol.14
, pp. 140-145
-
-
Haagmans, B.L.1
Al Dhahiry, S.H.2
Reusken, C.B.3
Raj, V.S.4
Galiano, M.5
Myers, R.6
Godeke, G.J.7
Jonges, M.8
Farag, E.9
Diab, A.10
Ghobashy, H.11
Alhajri, F.12
Al-Thani, M.13
Al-Marri, S.A.14
Al Romaihi, H.E.15
Al Khal, A.16
Bermingham, A.17
Osterhaus, A.D.18
AlHajri, M.M.19
Koopmans, M.P.20
more..
-
5
-
-
84899938536
-
Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013
-
Memish, Z. A., M., Cotten, B., Meyer, S. J., Watson, A. J., Alsahafi, A. A., Al Rabeeah, V. M., Corman, A., Sieberg, H. Q., Makhdoom, A., Assiri, M., Al Masri, S., Aldabbagh, B. J., Bosch, M., Beer, M. A., Muller, P., Kellam, and C., Drosten. 2014. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis 20:1012–1015. doi: 10.3201/eid2006.140402.
-
(2014)
Emerg Infect Dis
, vol.20
, Issue.1012-1015
-
-
Memish, Z.A.1
Cotten, M.2
Meyer, B.3
Watson, S.J.4
Alsahafi, A.J.5
Al Rabeeah, A.A.6
Corman, V.M.7
Sieberg, A.8
Makhdoom, H.Q.9
Assiri, A.10
Al Masri, M.11
Aldabbagh, S.12
Bosch, B.J.13
Beer, M.14
Muller, M.A.15
Kellam, P.16
Drosten, C.17
-
6
-
-
85008893220
-
MERS-CoV spike protein: a key target for antivirals
-
Du, L., Y., Yang, Y., Zhou, L., Lu, F., Li, and S., Jiang. 2017. MERS-CoV spike protein: a key target for antivirals. Expert Opin. Ther. Targets. 21:131–143. doi: 10.1080/14728222.2017.1271415.
-
(2017)
Expert Opin. Ther. Targets
, vol.21
, pp. 131-143
-
-
Du, L.1
Yang, Y.2
Zhou, Y.3
Lu, L.4
Li, F.5
Jiang, S.6
-
7
-
-
84960090603
-
Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
-
Walls, A. C., M. A., Tortorici, B. J., Bosch, B., Frenz, P. J. M., Rottier, F., DiMaio, F. A., Rey, and D., Veesler. 2016. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 531:114–117. doi: 10.1038/nature16988.
-
(2016)
Nature
, vol.531
, pp. 114-117
-
-
Walls, A.C.1
Tortorici, M.A.2
Bosch, B.J.3
Frenz, B.4
Rottier, P.J.M.5
DiMaio, F.6
Rey, F.A.7
Veesler, D.8
-
8
-
-
84987652828
-
Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
-
Walls, A. C., M. A., Tortorici, B., Frenz, J., Snijder, W., Li, F. A., Rey, F., DiMaio, B. J., Bosch, and D., Veesler. 2016. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 23:899–905. doi: 10.1038/nsmb.3293.
-
(2016)
Nat. Struct. Mol. Biol
, vol.23
, pp. 899-905
-
-
Walls, A.C.1
Tortorici, M.A.2
Frenz, B.3
Snijder, J.4
Li, W.5
Rey, F.A.6
DiMaio, F.7
Bosch, B.J.8
Veesler, D.9
-
9
-
-
85044147382
-
Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections
-
Xiong, X., M. A., Tortorici, J., Snijder, C., Yoshioka, A. C., Walls, W., Li, A. T., McGuire, F. A., Rey, B. J., Bosch, and D., Veesler. 2017. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections. J. Virol. doi: JVI.01628-17 [pii].
-
(2017)
J. Virol
-
-
Xiong, X.1
Tortorici, M.A.2
Snijder, J.3
Yoshioka, C.4
Walls, A.C.5
Li, W.6
McGuire, A.T.7
Rey, F.A.8
Bosch, B.J.9
Veesler, D.10
-
10
-
-
84960173062
-
Pre-fusion structure of a human coronavirus spike protein
-
Kirchdoerfer, R. N., C. A., Cottrell, N., Wang, J., Pallesen, H. M., Yassine, H. L., Turner, K. S., Corbett, B. S., Graham, J. S., McLellan, and A. B., Ward. 2016. Pre-fusion structure of a human coronavirus spike protein. Nature. 531:118–121. doi: 10.1038/nature17200.
-
(2016)
Nature
, vol.531
, pp. 118-121
-
-
Kirchdoerfer, R.N.1
Cottrell, C.A.2
Wang, N.3
Pallesen, J.4
Yassine, H.M.5
Turner, H.L.6
Corbett, K.S.7
Graham, B.S.8
McLellan, J.S.9
Ward, A.B.10
-
11
-
-
85041170336
-
Cryo-Electron microscopy Structure of Porcine Deltacoronavirus spike protein in the prefusion state
-
JVI.01556-17 [pii]
-
Shang, J., Y., Zheng, Y., Yang, C., Liu, Q., Geng, W., Tai, L., Du, Y., Zhou, W., Zhang, and F., Li. 2018. Cryo-Electron microscopy Structure of Porcine Deltacoronavirus spike protein in the prefusion state. J. Virol. 92. doi: 10.1128/JVI.01556-17. JVI.01556-17 [pii].
-
(2018)
J. Virol
, vol.92
-
-
Shang, J.1
Zheng, Y.2
Yang, Y.3
Liu, C.4
Geng, Q.5
Tai, W.6
Du, L.7
Zhou, Y.8
Zhang, W.9
Li, F.10
-
12
-
-
85046421949
-
Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins
-
Shang, J., Y., Zheng, Y., Yang, C., Liu, Q., Geng, C., Luo, W., Zhang, and F., Li. 2018. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog. 14:e1007009. doi: 10.1371/journal.ppat.1007009.
-
(2018)
PLoS Pathog
, vol.14
, pp. e1007009
-
-
Shang, J.1
Zheng, Y.2
Yang, Y.3
Liu, C.4
Geng, Q.5
Luo, C.6
Zhang, W.7
Li, F.8
-
13
-
-
85017378927
-
Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
-
Yuan, Y., D., Cao, Y., Zhang, J., Ma, J., Qi, Q., Wang, G., Lu, Y., Wu, J., Yan, Y., Shi, X., Zhang, and G. F., Gao. 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8:15092. doi: 10.1038/ncomms15092.
-
(2017)
Nat. Commun
, vol.8
, pp. 15092
-
-
Yuan, Y.1
Cao, D.2
Zhang, Y.3
Ma, J.4
Qi, J.5
Wang, Q.6
Lu, G.7
Wu, Y.8
Yan, J.9
Shi, Y.10
Zhang, X.11
Gao, G.F.12
-
14
-
-
84874996988
-
Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
-
Raj, V. S., H., Mou, S. L., Smits, D. H., Dekkers, M. A., Muller, R., Dijkman, D., Muth, J. A., Demmers, A., Zaki, R. A., Fouchier, V., Thiel, C., Drosten, P. J., Rottier, A. D., Osterhaus, B. J., Bosch, and B. L., Haagmans. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 495:251–254. doi: 10.1038/nature12005.
-
(2013)
Nature
, vol.495
, pp. 251-254
-
-
Raj, V.S.1
Mou, H.2
Smits, S.L.3
Dekkers, D.H.4
Muller, M.A.5
Dijkman, R.6
Muth, D.7
Demmers, J.A.8
Zaki, A.9
Fouchier, R.A.10
Thiel, V.11
Drosten, C.12
Rottier, P.J.13
Osterhaus, A.D.14
Bosch, B.J.15
Haagmans, B.L.16
-
15
-
-
84881232247
-
The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies
-
Mou, H., V. S., Raj, F. J., van Kuppeveld, P. J., Rottier, B. L., Haagmans, and B. J., Bosch. 2013. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J. Virol. 87:9379–9383. doi: 10.1128/JVI.01277-13.
-
(2013)
J. Virol
, vol.87
, pp. 9379-9383
-
-
Mou, H.1
Raj, V.S.2
van Kuppeveld, F.J.3
Rottier, P.J.4
Haagmans, B.L.5
Bosch, B.J.6
-
16
-
-
85030211862
-
Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein
-
Li, W., R. J. G., Hulswit, I., Widjaja, V. S., Raj, R., McBride, W., Peng, W., Widagdo, M. A., Tortorici, B., van Dieren, Y., Lang, J. W. M., van Lent, J. C., Paulson, C. A. M., de Haan, R. J., de Groot, F. J. M., van Kuppeveld, B. L., Haagmans, and B. J., Bosch. 2017. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc. Natl. Acad. Sci. U. S. A. 114:E8508–E8517. doi: 10.1073/pnas.1712592114.
-
(2017)
Proc. Natl. Acad. Sci. U. S. A
, vol.114
, pp. E8508-E8517
-
-
Li, W.1
Hulswit, R.J.G.2
Widjaja, I.3
Raj, V.S.4
McBride, R.5
Peng, W.6
Widagdo, W.7
Tortorici, M.A.8
van Dieren, B.9
Lang, Y.10
van Lent, J.W.M.11
Paulson, J.C.12
de Haan, C.A.M.13
de Groot, R.J.14
van Kuppeveld, F.J.M.15
Haagmans, B.L.16
Bosch, B.J.17
-
17
-
-
84939863145
-
Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus
-
Corti, D., J., Zhao, M., Pedotti, L., Simonelli, S., Agnihothram, C., Fett, B., Fernandez-Rodriguez, M., Foglierini, G., Agatic, F., Vanzetta, R., Gopal, C. J., Langrish, N. A., Barrett, F., Sallusto, R. S., Baric, L., Varani, M., Zambon, S., Perlman, and A., Lanzavecchia. 2015. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc. Natl. Acad. Sci. U. S. A. 112:10473–10478. doi: 10.1073/pnas.1510199112.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A
, vol.112
, pp. 10473-10478
-
-
Corti, D.1
Zhao, J.2
Pedotti, M.3
Simonelli, L.4
Agnihothram, S.5
Fett, C.6
Fernandez-Rodriguez, B.7
Foglierini, M.8
Agatic, G.9
Vanzetta, F.10
Gopal, R.11
Langrish, C.J.12
Barrett, N.A.13
Sallusto, F.14
Baric, R.S.15
Varani, L.16
Zambon, M.17
Perlman, S.18
Lanzavecchia, A.19
-
18
-
-
84901303550
-
A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein
-
Du, L., G., Zhao, Y., Yang, H., Qiu, L., Wang, Z., Kou, X., Tao, H., Yu, S., Sun, C. T., Tseng, S., Jiang, F., Li, and Y., Zhou. 2014. A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J. Virol. 88:7045–7053. doi: 10.1128/JVI.00433-14.
-
(2014)
J. Virol
, vol.88
, pp. 7045-7053
-
-
Du, L.1
Zhao, G.2
Yang, Y.3
Qiu, H.4
Wang, L.5
Kou, Z.6
Tao, X.7
Yu, H.8
Sun, S.9
Tseng, C.T.10
Jiang, S.11
Li, F.12
Zhou, Y.13
-
19
-
-
84946491594
-
A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein
-
Li, Y., Y., Wan, P., Liu, J., Zhao, G., Lu, J., Qi, Q., Wang, X., Lu, Y., Wu, W., Liu, B., Zhang, K. Y., Yuen, S., Perlman, G. F., Gao, and J., Yan. 2015. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res. 25:1237–1249. doi: 10.1038/cr.2015.113.
-
(2015)
Cell Res
, vol.25
, pp. 1237-1249
-
-
Li, Y.1
Wan, Y.2
Liu, P.3
Zhao, J.4
Lu, G.5
Qi, J.6
Wang, Q.7
Lu, X.8
Wu, Y.9
Liu, W.10
Zhang, B.11
Yuen, K.Y.12
Perlman, S.13
Gao, G.F.14
Yan, J.15
-
20
-
-
84937107017
-
Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection
-
Pascal, K. E., C. M., Coleman, A. O., Mujica, V., Kamat, A., Badithe, J., Fairhurst, C., Hunt, J., Strein, A., Berrebi, J. M., Sisk, K. L., Matthews, R., Babb, G., Chen, K. M., Lai, T. T., Huang, W., Olson, G. D., Yancopoulos, N., Stahl, M. B., Frieman, and C. A., Kyratsous. 2015. Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection. Proc. Natl. Acad. Sci. U. S. A. 112:8738–8743. doi: 10.1073/pnas.1510830112.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A
, vol.112
, pp. 8738-8743
-
-
Pascal, K.E.1
Coleman, C.M.2
Mujica, A.O.3
Kamat, V.4
Badithe, A.5
Fairhurst, J.6
Hunt, C.7
Strein, J.8
Berrebi, A.9
Sisk, J.M.10
Matthews, K.L.11
Babb, R.12
Chen, G.13
Lai, K.M.14
Huang, T.T.15
Olson, W.16
Yancopoulos, G.D.17
Stahl, N.18
Frieman, M.B.19
Kyratsous, C.A.20
more..
-
21
-
-
84899797757
-
Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein
-
Jiang, L., N., Wang, T., Zuo, X., Shi, K. M., Poon, Y., Wu, F., Gao, D., Li, R., Wang, J., Guo, L., Fu, K. Y., Yuen, B. J., Zheng, X., Wang, and L., Zhang. 2014. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci. Transl. Med. 6:234ra59. doi: 10.1126/scitranslmed.3008140.
-
(2014)
Sci. Transl. Med
, vol.6
, pp. 234ra59
-
-
Jiang, L.1
Wang, N.2
Zuo, T.3
Shi, X.4
Poon, K.M.5
Wu, Y.6
Gao, F.7
Li, D.8
Wang, R.9
Guo, J.10
Fu, L.11
Yuen, K.Y.12
Zheng, B.J.13
Wang, X.14
Zhang, L.15
-
22
-
-
84900515662
-
Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution
-
Tang, X. C., S. S., Agnihothram, Y., Jiao, J., Stanhope, R. L., Graham, E. C., Peterson, Y., Avnir, A. S., Tallarico, J., Sheehan, Q., Zhu, R. S., Baric, and W. A., Marasco. 2014. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc. Natl. Acad. Sci. U. S. A. 111:E2018–E2026. doi: 10.1073/pnas.1402074111.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A
, vol.111
, pp. E2018-E2026
-
-
Tang, X.C.1
Agnihothram, S.S.2
Jiao, Y.3
Stanhope, J.4
Graham, R.L.5
Peterson, E.C.6
Avnir, Y.7
Tallarico, A.S.8
Sheehan, J.9
Zhu, Q.10
Baric, R.S.11
Marasco, W.A.12
-
23
-
-
84904663317
-
Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies
-
Ying, T., L., Du, T. W., Ju, P., Prabakaran, C. C., Lau, L., Lu, Q., Liu, L., Wang, Y., Feng, Y., Wang, B. J., Zheng, K. Y., Yuen, S., Jiang, and D. S., Dimitrov. 2014. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J. Virol. 88:7796–7805. doi: 10.1128/JVI.00912-14.
-
(2014)
J. Virol
, vol.88
, pp. 7796-7805
-
-
Ying, T.1
Du, L.2
Ju, T.W.3
Prabakaran, P.4
Lau, C.C.5
Lu, L.6
Liu, Q.7
Wang, L.8
Feng, Y.9
Wang, Y.10
Zheng, B.J.11
Yuen, K.Y.12
Jiang, S.13
Dimitrov, D.S.14
-
24
-
-
84961381392
-
3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012
-
Johnson, R. F., U., Bagci, L., Keith, X., Tang, D. J., Mollura, L., Zeitlin, J., Qin, L., Huzella, C. J., Bartos, N., Bohorova, O., Bohorov, C., Goodman, D. H., Kim, M. H., Paulty, J., Velasco, K. J., Whaley, J. C., Johnson, J., Pettitt, B. L., Ork, J., Solomon, N., Oberlander, Q., Zhu, J., Sun, M. R., Holbrook, G. G., Olinger, R. S., Baric, L. E., Hensley, P. B., Jahrling, and W. A., Marasco. 2016. 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012. Virology. 490:49–58. doi: 10.1016/j.virol.2016.01.004.
-
(2016)
Virology
, vol.490
, pp. 49-58
-
-
Johnson, R.F.1
Bagci, U.2
Keith, L.3
Tang, X.4
Mollura, D.J.5
Zeitlin, L.6
Qin, J.7
Huzella, L.8
Bartos, C.J.9
Bohorova, N.10
Bohorov, O.11
Goodman, C.12
Kim, D.H.13
Paulty, M.H.14
Velasco, J.15
Whaley, K.J.16
Johnson, J.C.17
Pettitt, J.18
Ork, B.L.19
Solomon, J.20
Oberlander, N.21
Zhu, Q.22
Sun, J.23
Holbrook, M.R.24
Olinger, G.G.25
Baric, R.S.26
Hensley, L.E.27
Jahrling, P.B.28
Marasco, W.A.29
more..
-
25
-
-
84975474690
-
Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection
-
Qiu, H., S., Sun, H., Xiao, J., Feng, Y., Guo, W., Tai, Y., Wang, L., Du, G., Zhao, and Y., Zhou. 2016. Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection. Antiviral Res. 132:141–148. doi: 10.1016/j.antiviral.2016.06.003.
-
(2016)
Antiviral Res
, vol.132
, pp. 141-148
-
-
Qiu, H.1
Sun, S.2
Xiao, H.3
Feng, J.4
Guo, Y.5
Tai, W.6
Wang, Y.7
Du, L.8
Zhao, G.9
Zhou, Y.10
-
26
-
-
84983334840
-
Passive transfer of A Germline-like neutralizing human monoclonal antibody Protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection
-
Agrawal, A. S., T., Ying, X., Tao, T., Garron, A., Algaissi, Y., Wang, L., Wang, B. H., Peng, S., Jiang, D. S., Dimitrov, and C. T., Tseng. 2016. Passive transfer of A Germline-like neutralizing human monoclonal antibody Protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection. Sci. Rep. 6:31629. doi: 10.1038/srep31629.
-
(2016)
Sci. Rep
, vol.6
, pp. 31629
-
-
Agrawal, A.S.1
Ying, T.2
Tao, X.3
Garron, T.4
Algaissi, A.5
Wang, Y.6
Wang, L.7
Peng, B.H.8
Jiang, S.9
Dimitrov, D.S.10
Tseng, C.T.11
-
27
-
-
84970027977
-
Prophylaxis With a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody Protects Rabbits from MERS-CoV infection
-
Houser, K. V., L., Gretebeck, T., Ying, Y., Wang, L., Vogel, E. W., Lamirande, K. W., Bock, I. N., Moore, D. S., Dimitrov, and K., Subbarao. 2016. Prophylaxis With a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody Protects Rabbits from MERS-CoV infection. J. Infect. Dis. 213:1557–1561. doi: 10.1093/infdis/jiw080.
-
(2016)
J. Infect. Dis
, vol.213
, pp. 1557-1561
-
-
Houser, K.V.1
Gretebeck, L.2
Ying, T.3
Wang, Y.4
Vogel, L.5
Lamirande, E.W.6
Bock, K.W.7
Moore, I.N.8
Dimitrov, D.S.9
Subbarao, K.10
-
28
-
-
84939545662
-
Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27
-
Yu, X., S., Zhang, L., Jiang, Y., Cui, D., Li, D., Wang, N., Wang, L., Fu, X., Shi, Z., Li, L., Zhang, and X., Wang. 2015. Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27. Sci. Rep. 5:13133. doi: 10.1038/srep13133.
-
(2015)
Sci. Rep
, vol.5
, pp. 13133
-
-
Yu, X.1
Zhang, S.2
Jiang, L.3
Cui, Y.4
Li, D.5
Wang, D.6
Wang, N.7
Fu, L.8
Shi, X.9
Li, Z.10
Zhang, L.11
Wang, X.12
-
29
-
-
84938149041
-
Evaluation of candidate vaccine approaches for MERS-CoV
-
Wang, L., W., Shi, M. G., Joyce, K., Modjarrad, Y., Zhang, K., Leung, C. R., Lees, T., Zhou, H. M., Yassine, M., Kanekiyo, Z. Y., Yang, X., Chen, M. M., Becker, M., Freeman, L., Vogel, J. C., Johnson, G., Olinger, J. P., Todd, U., Bagci, J., Solomon, D. J., Mollura, L., Hensley, P., Jahrling, M. R., Denison, S. S., Rao, K., Subbarao, P. D., Kwong, J. R., Mascola, W. P., Kong, and B. S., Graham. 2015. Evaluation of candidate vaccine approaches for MERS-CoV. Nat. Commun. 6:7712. doi: 10.1038/ncomms8712.
-
(2015)
Nat. Commun
, vol.6
, pp. 7712
-
-
Wang, L.1
Shi, W.2
Joyce, M.G.3
Modjarrad, K.4
Zhang, Y.5
Leung, K.6
Lees, C.R.7
Zhou, T.8
Yassine, H.M.9
Kanekiyo, M.10
Yang, Z.Y.11
Chen, X.12
Becker, M.M.13
Freeman, M.14
Vogel, L.15
Johnson, J.C.16
Olinger, G.17
Todd, J.P.18
Bagci, U.19
Solomon, J.20
Mollura, D.J.21
Hensley, L.22
Jahrling, P.23
Denison, M.R.24
Rao, S.S.25
Subbarao, K.26
Kwong, P.D.27
Mascola, J.R.28
Kong, W.P.29
Graham, B.S.30
more..
-
30
-
-
85049898486
-
Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV spike to avoid neutralization escape
-
Wang, L., W., Shi, J. D., Chappell, M. G., Joyce, Y., Zhang, M., Kanekiyo, M. M., Becker, N., van Doremalen, R., Fischer, N., Wang, K. S., Corbett, M., Choe, R. D., Mason, J. G., Van Galen, T., Zhou, K. O., Saunders, K. M., Tatti, L. M., Haynes, P. D., Kwong, K., Modjarrad, W. P., Kong, J. S., McLellan, M. R., Denison, V. J., Munster, J. R., Mascola, and B. S., Graham. 2018. Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV spike to avoid neutralization escape. J. Virol. doi: JVI.02002-17 [pii].
-
(2018)
J. Virol
-
-
Wang, L.1
Shi, W.2
Chappell, J.D.3
Joyce, M.G.4
Zhang, Y.5
Kanekiyo, M.6
Becker, M.M.7
van Doremalen, N.8
Fischer, R.9
Wang, N.10
Corbett, K.S.11
Choe, M.12
Mason, R.D.13
Van Galen, J.G.14
Zhou, T.15
Saunders, K.O.16
Tatti, K.M.17
Haynes, L.M.18
Kwong, P.D.19
Modjarrad, K.20
Kong, W.P.21
McLellan, J.S.22
Denison, M.R.23
Munster, V.J.24
Mascola, J.R.25
Graham, B.S.26
more..
-
31
-
-
84907263545
-
Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp
-
Qiu, X., G., Wong, J., Audet, A., Bello, L., Fernando, J. B., Alimonti, H., Fausther-Bovendo, H., Wei, J., Aviles, E., Hiatt, A., Johnson, J., Morton, K., Swope, O., Bohorov, N., Bohorova, C., Goodman, D., Kim, M. H., Pauly, J., Velasco, J., Pettitt, G. G., Olinger, K., Whaley, B., Xu, J. E., Strong, L., Zeitlin, and G. P., Kobinger. 2014. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 514:47–53. doi: 10.1038/nature13777.
-
(2014)
Nature
, vol.514
, pp. 47-53
-
-
Qiu, X.1
Wong, G.2
Audet, J.3
Bello, A.4
Fernando, L.5
Alimonti, J.B.6
Fausther-Bovendo, H.7
Wei, H.8
Aviles, J.9
Hiatt, E.10
Johnson, A.11
Morton, J.12
Swope, K.13
Bohorov, O.14
Bohorova, N.15
Goodman, C.16
Kim, D.17
Pauly, M.H.18
Velasco, J.19
Pettitt, J.20
Olinger, G.G.21
Whaley, K.22
Xu, B.23
Strong, J.E.24
Zeitlin, L.25
Kobinger, G.P.26
more..
-
32
-
-
84990855039
-
Feverish Quest for Ebola Immunotherapy: Straight or Cocktail?
-
S0966-842X(16)30049-X [pii], and
-
Saphire, E. O., and M. J., Aman. 2016. Feverish Quest for Ebola Immunotherapy: Straight or Cocktail? Trends Microbiol. 24:684–686. doi:S0966-842X(16)30049-X [pii] doi: 10.1016/j.tim.2016.05.008
-
(2016)
Trends Microbiol
, vol.24
, pp. 684-686
-
-
Saphire, E.O.1
Aman, M.J.2
-
33
-
-
85050869127
-
Systematic analysis of monoclonal antibodies against Ebola virus GP defines Features that contribute to protection
-
S0092-8674(18)30960-7 [pii], and
-
Saphire, E. O., S. L., Schendel, M. L., Fusco, K., Gangavarapu, B. M., Gunn, A. Z., Wec, P. J., Halfmann, J. M., Brannan, A. S., Herbert, X., Qiu, K., Wagh, S., He, E. E., Giorgi, J., Theiler, K. B. J., Pommert, T. B., Krause, H. L., Turner, C. D., Murin, J., Pallesen, E., Davidson, R., Ahmed, M. J., Aman, A., Bukreyev, D. R., Burton, J. E., Crowe Jr, C. W., Davis, G., Georgiou, F., Krammer, C. A., Kyratsous, J. R., Lai, C., Nykiforuk, M. H., Pauly, P., Rijal, A., Takada, A. R., Townsend, V., Volchkov, L. M., Walker, C. I., Wang, L., Zeitlin, B. J., Doranz, A. B., Ward, B., Korber, G. P., Kobinger, K. G., Andersen, Y., Kawaoka, G., Alter, K., Chandran, J. M., Dye, and Viral Hemorrhagic Fever Immunotherapeutic Consortium. 2018. Systematic analysis of monoclonal antibodies against Ebola virus GP defines Features that contribute to protection. Cell. 174:938–952. e13. doi: S0092-8674(18)30960-7 [pii] doi: 10.1016/j.cell.2018.07.033
-
(2018)
Cell
, vol.174
, pp. e13-e952
-
-
Saphire, E.O.1
Schendel, S.L.2
Fusco, M.L.3
Gangavarapu, K.4
Gunn, B.M.5
Wec, A.Z.6
Halfmann, P.J.7
Brannan, J.M.8
Herbert, A.S.9
Qiu, X.10
Wagh, K.11
He, S.12
Giorgi, E.E.13
Theiler, J.14
Pommert, K.B.J.15
Krause, T.B.16
Turner, H.L.17
Murin, C.D.18
Pallesen, J.19
Davidson, E.20
Ahmed, R.21
Aman, M.J.22
Bukreyev, A.23
Burton, D.R.24
Crowe Jr, J.E.25
Davis, C.W.26
Georgiou, G.27
Krammer, F.28
Kyratsous, C.A.29
Lai, J.R.30
Nykiforuk, C.31
Pauly, M.H.32
Rijal, P.33
Takada, A.34
Townsend, A.R.35
Volchkov, V.36
Walker, L.M.37
Wang, C.I.38
Zeitlin, L.39
Doranz, B.J.40
Ward, A.B.41
Korber, B.42
Kobinger, G.P.43
Andersen, K.G.44
Kawaoka, Y.45
Alter, G.46
Chandran, K.47
Dye, J.M.48
more..
-
34
-
-
85065012127
-
-
Regeneron Pharmaceuticals Inc. International publication number: WO2015179535
-
Kyratsous, C., N., Stahl, and S., Sfvapalasingam. 2015. Regeneron Pharmaceuticals Inc. International publication number: WO2015179535.
-
(2015)
-
-
Kyratsous, C.1
Stahl, N.2
Sfvapalasingam, S.3
-
35
-
-
85031329007
-
Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion
-
Walls, A. C., M. A., Tortorici, J., Snijder, X., Xiong, B. J., Bosch, F. A., Rey, and D., Veesler. 2017. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 114:11157–11162. doi: 10.1073/pnas.1708727114.
-
(2017)
Proc. Natl. Acad. Sci. U. S. A
, vol.114
, pp. 11157-11162
-
-
Walls, A.C.1
Tortorici, M.A.2
Snijder, J.3
Xiong, X.4
Bosch, B.J.5
Rey, F.A.6
Veesler, D.7
-
36
-
-
84958639382
-
Middle East respiratory syndrome coronavirus causes multiple Organ Damage and lethal disease in mice transgenic for human Dipeptidyl Peptidase 4
-
Li, K., C., Wohlford-Lenane, S., Perlman, J., Zhao, A. K., Jewell, L. R., Reznikov, K. N., Gibson-Corley, D. K., Meyerholz, and P. B., McCray Jr. 2016. Middle East respiratory syndrome coronavirus causes multiple Organ Damage and lethal disease in mice transgenic for human Dipeptidyl Peptidase 4. J. Infect. Dis. 213:712–722. doi: 10.1093/infdis/jiv499.
-
(2016)
J. Infect. Dis
, vol.213
, pp. 712-722
-
-
Li, K.1
Wohlford-Lenane, C.2
Perlman, S.3
Zhao, J.4
Jewell, A.K.5
Reznikov, L.R.6
Gibson-Corley, K.N.7
Meyerholz, D.K.8
McCray Jr, P.B.9
-
37
-
-
85065023977
-
-
World Health Organization. http://www.who.int/blueprint/what/research-development/meeting-report-prioritization.pdf?ua = 1.
-
-
-
-
38
-
-
33645086686
-
Developments towards effective treatments for Nipah and Hendra virus infection
-
Bossart, K. N., and C. C., Broder. 2006. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev. Anti Infect. Ther. 4:43–55. doi: 10.1586/14787210.4.1.43.
-
(2006)
Expert Rev. Anti Infect. Ther
, vol.4
, pp. 43-55
-
-
Bossart, K.N.1
Broder, C.C.2
-
39
-
-
85039066883
-
Beyond binding: antibody effector functions in infectious diseases
-
Lu, L. L., T. J., Suscovich, S. M., Fortune, and G., Alter. 2017. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18:46–61. doi: 10.1038/nri.2017.106.
-
(2017)
Nat. Rev. Immunol
, vol.18
, pp. 46-61
-
-
Lu, L.L.1
Suscovich, T.J.2
Fortune, S.M.3
Alter, G.4
-
40
-
-
84866534949
-
Crosstalk between human IgG isotypes and murine effector cells
-
–,. :, [pii]
-
Overdijk, M. B., S., Verploegen, A., Ortiz Buijsse, T., Vink, J. H., Leusen, W. K., Bleeker, and P. W., Parren. 2012. Crosstalk between human IgG isotypes and murine effector cells. J. Immunol. 189:3430–3438. doi: 10.4049/jimmunol.1200356 [pii]
-
(2012)
J. Immunol
, vol.189
, pp. 3430-3438
-
-
Overdijk, M.B.1
Verploegen, S.2
Ortiz Buijsse, A.3
Vink, T.4
Leusen, J.H.5
Bleeker, W.K.6
Parren, P.W.7
-
41
-
-
84922806645
-
Molecular characterization of the monoclonal antibodies composing ZMAb: a protective cocktail against Ebola virus
-
Audet, J., G., Wong, H., Wang, G., Lu, G. F., Gao, G., Kobinger, and X., Qiu. 2015. Molecular characterization of the monoclonal antibodies composing ZMAb: a protective cocktail against Ebola virus. Sci. Rep. 4:6881. doi: 10.1038/srep06881.
-
(2015)
Sci. Rep
, vol.4
, pp. 6881
-
-
Audet, J.1
Wong, G.2
Wang, H.3
Lu, G.4
Gao, G.F.5
Kobinger, G.6
Qiu, X.7
-
42
-
-
84862525229
-
Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies
-
Qiu, X., J., Audet, G., Wong, S., Pillet, A., Bello, T., Cabral, J. E., Strong, F., Plummer, C. R., Corbett, J. B., Alimonti, and G. P., Kobinger. 2012. Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 4:138ra81. doi: 10.1126/scitranslmed.3003876.
-
(2012)
Sci. Transl. Med
, vol.4
, pp. 138ra81
-
-
Qiu, X.1
Audet, J.2
Wong, G.3
Pillet, S.4
Bello, A.5
Cabral, T.6
Strong, J.E.7
Plummer, F.8
Corbett, C.R.9
Alimonti, J.B.10
Kobinger, G.P.11
-
43
-
-
84876818205
-
Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus
-
Pal, P., K. A., Dowd, J. D., Brien, M. A., Edeling, S., Gorlatov, S., Johnson, I., Lee, W., Akahata, G. J., Nabel, M. K., Richter, J. M., Smit, D. H., Fremont, T. C., Pierson, M. T., Heise, and M. S., Diamond. 2013. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog. 9:e1003312. doi: 10.1371/journal.ppat.1003312.
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003312
-
-
Pal, P.1
Dowd, K.A.2
Brien, J.D.3
Edeling, M.A.4
Gorlatov, S.5
Johnson, S.6
Lee, I.7
Akahata, W.8
Nabel, G.J.9
Richter, M.K.10
Smit, J.M.11
Fremont, D.H.12
Pierson, T.C.13
Heise, M.T.14
Diamond, M.S.15
-
44
-
-
21644487726
-
Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants
-
79/14/9062 [pii], and
-
Bakker, A. B., W. E., Marissen, R. A., Kramer, A. B., Rice, W. C., Weldon, M., Niezgoda, C. A., Hanlon, S., Thijsse, H. H., Backus, J., de Kruif, B., Dietzschold, C. E., Rupprecht, and J., Goudsmit. 2005. Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J. Virol. 79:9062–9068. doi:79/14/9062 [pii]
-
(2005)
J. Virol
, vol.79
, pp. 9062-9068
-
-
Bakker, A.B.1
Marissen, W.E.2
Kramer, R.A.3
Rice, A.B.4
Weldon, W.C.5
Niezgoda, M.6
Hanlon, C.A.7
Thijsse, S.8
Backus, H.H.9
de Kruif, J.10
Dietzschold, B.11
Rupprecht, C.E.12
Goudsmit, J.13
-
45
-
-
84994181160
-
Molecular Basis of coronavirus Virulence and vaccine development
-
S0065-3527(16)30042-2 [pii], and
-
Enjuanes, L., S., Zuniga, C., Castano-Rodriguez, J., Gutierrez-Alvarez, J., Canton, and I., Sola. 2016. Molecular Basis of coronavirus Virulence and vaccine development. Adv. Virus Res. 96:245–286. doi:S0065-3527(16)30042-2 [pii] doi: 10.1016/bs.aivir.2016.08.003
-
(2016)
Adv. Virus Res
, vol.96
, pp. 245-286
-
-
Enjuanes, L.1
Zuniga, S.2
Castano-Rodriguez, C.3
Gutierrez-Alvarez, J.4
Canton, J.5
Sola, I.6
-
46
-
-
80051670323
-
A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins
-
Corti, D., J., Voss, S. J., Gamblin, G., Codoni, A., Macagno, D., Jarrossay, S. G., Vachieri, D., Pinna, A., Minola, F., Vanzetta, C., Silacci, B. M., Fernandez-Rodriguez, G., Agatic, S., Bianchi, I., Giacchetto-Sasselli, L., Calder, F., Sallusto, P., Collins, L. F., Haire, N., Temperton, J. P., Langedijk, J. J., Skehel, and A., Lanzavecchia. 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 333:850–856. doi: 10.1126/science.1205669.
-
(2011)
Science
, vol.333
, pp. 850-856
-
-
Corti, D.1
Voss, J.2
Gamblin, S.J.3
Codoni, G.4
Macagno, A.5
Jarrossay, D.6
Vachieri, S.G.7
Pinna, D.8
Minola, A.9
Vanzetta, F.10
Silacci, C.11
Fernandez-Rodriguez, B.M.12
Agatic, G.13
Bianchi, S.14
Giacchetto-Sasselli, I.15
Calder, L.16
Sallusto, F.17
Collins, P.18
Haire, L.F.19
Temperton, N.20
Langedijk, J.P.21
Skehel, J.J.22
Lanzavecchia, A.23
more..
-
47
-
-
84958078190
-
Discovery of an antibody for pan-ebolavirus therapy
-
Furuyama, W., A., Marzi, A., Nanbo, E., Haddock, J., Maruyama, H., Miyamoto, M., Igarashi, R., Yoshida, O., Noyori, H., Feldmann, and A., Takada. 2016. Discovery of an antibody for pan-ebolavirus therapy. Sci. Rep. 6:20514. doi: 10.1038/srep20514.
-
(2016)
Sci. Rep
, vol.6
, Issue.20514
-
-
Furuyama, W.1
Marzi, A.2
Nanbo, A.3
Haddock, E.4
Maruyama, J.5
Miyamoto, H.6
Igarashi, M.7
Yoshida, R.8
Noyori, O.9
Feldmann, H.10
Takada, A.11
-
48
-
-
85053075312
-
Multifunctional Pan-ebolavirus antibody recognizes a site of broad Vulnerability on the ebolavirus glycoprotein
-
Gilchuk, P., N., Kuzmina, P. A., Ilinykh, K., Huang, B. M., Gunn, A., Bryan, E., Davidson, B. J., Doranz, H. L., Turner, M. L., Fusco, M. S., Bramble, N. A., Hoff, E., Binshtein, N., Kose, A. I., Flyak, R., Flinko, C., Orlandi, R., Carnahan, E. H., Parrish, A. M., Sevy, R. G., Bombardi, P. K., Singh, P., Mukadi, J. J., Muyembe-Tamfum, M. D., Ohi, E. O., Saphire, G. K., Lewis, G., Alter, A. B., Ward, A. W., Rimoin, A., Bukreyev, and J. E., Crowe Jr. 2018. Multifunctional Pan-ebolavirus antibody recognizes a site of broad Vulnerability on the ebolavirus glycoprotein. Immunity. doi: S1074-7613(18)30300-5 [pii].
-
(2018)
Immunity
-
-
Gilchuk, P.1
Kuzmina, N.2
Ilinykh, P.A.3
Huang, K.4
Gunn, B.M.5
Bryan, A.6
Davidson, E.7
Doranz, B.J.8
Turner, H.L.9
Fusco, M.L.10
Bramble, M.S.11
Hoff, N.A.12
Binshtein, E.13
Kose, N.14
Flyak, A.I.15
Flinko, R.16
Orlandi, C.17
Carnahan, R.18
Parrish, E.H.19
Sevy, A.M.20
Bombardi, R.G.21
Singh, P.K.22
Mukadi, P.23
Muyembe-Tamfum, J.J.24
Ohi, M.D.25
Saphire, E.O.26
Lewis, G.K.27
Alter, G.28
Ward, A.B.29
Rimoin, A.W.30
Bukreyev, A.31
Crowe Jr, J.E.32
more..
-
49
-
-
77949415497
-
Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64
-
Kaname, Y., H., Tani, C., Kataoka, M., Shiokawa, S., Taguwa, T., Abe, K., Moriishi, T., Kinoshita, and Y., Matsuura. 2010. Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64. J. Virol. 84:3210–3219. doi: 10.1128/JVI.02519-09.
-
(2010)
J. Virol
, vol.84
, pp. 3210-3219
-
-
Kaname, Y.1
Tani, H.2
Kataoka, C.3
Shiokawa, M.4
Taguwa, S.5
Abe, T.6
Moriishi, K.7
Kinoshita, T.8
Matsuura, Y.9
-
50
-
-
85051389156
-
Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection
-
Stalin Raj, V., N. M. A., Okba, J., Gutierrez-Alvarez, D., Drabek, B., van Dieren, W., Widagdo, M. M., Lamers, I., Widjaja, R., Fernandez-Delgado, I., Sola, A., Bensaid, M. P., Koopmans, J., Segales, A. D. M. E., Osterhaus, B. J., Bosch, L., Enjuanes, and B. L., Haagmans. 2018. Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. Sci. Adv. 4:eaas9667. doi: 10.1126/sciadv.aas9667.
-
(2018)
Sci. Adv
, vol.4
, pp. eaas9667
-
-
Stalin Raj, V.1
Okba, N.M.A.2
Gutierrez-Alvarez, J.3
Drabek, D.4
van Dieren, B.5
Widagdo, W.6
Lamers, M.M.7
Widjaja, I.8
Fernandez-Delgado, R.9
Sola, I.10
Bensaid, A.11
Koopmans, M.P.12
Segales, J.13
Osterhaus, A.D.M.E.14
Bosch, B.J.15
Enjuanes, L.16
Haagmans, B.L.17
|