메뉴 건너뛰기




Volumn 40, Issue 15, 2019, Pages 5892-5916

An object-based and heterogeneous segment filter convolutional neural network for high-resolution remote sensing image classification

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; CONVOLUTION; DATA MINING; DECISION MAKING; DEEP LEARNING; ERRORS; IMAGE RESOLUTION; NEURAL NETWORKS; OBJECT RECOGNITION; POSITIVE IONS; REMOTE SENSING;

EID: 85062362438     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2019.1584687     Document Type: Article
Times cited : (21)

References (40)
  • 1
    • 78650884606 scopus 로고    scopus 로고
    • Building Detection Using Directional Spatial Constraints
    • Akçay, H. G., and S., Aksoy. 2010. “Building Detection Using Directional Spatial Constraints.” In 2010 Ieee International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, United States. 1932–1935. doi:10.1109/Igarss.2010.5652842.
    • (2010) Honolulu, Hawaii, United States , pp. 1932-1935
    • Akçay, H.G.1    Aksoy, S.2
  • 2
    • 73249139477 scopus 로고    scopus 로고
    • Object Based Image Analysis for Remote Sensing
    • Blaschke, T., 2010. “Object Based Image Analysis for Remote Sensing.” Isprs Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
    • (2010) Isprs Journal of Photogrammetry and Remote Sensing , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 4
    • 85019898857 scopus 로고    scopus 로고
    • Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network
    • Fu, G., C. J., Liu, R., Zhou, T., Sun, and Q. J., Zhang. 2017. “Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network.” Remote Sensing 9: 5. doi:10.3390/Rs9050498.
    • (2017) Remote Sensing , vol.9 , pp. 5
    • Fu, G.1    Liu, C.J.2    Zhou, R.3    Sun, T.4    Zhang, Q.J.5
  • 6
    • 33745805403 scopus 로고    scopus 로고
    • A Fast Learning Algorithm for Deep Belief Nets
    • Hinton, G. E., S., Osindero, and Y. W., Teh. 2006. “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation 18 (7): 1527–1554. doi:10.1162/neco.2006.18.7.1527.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 7
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • Hu, F., G. S., Xia, J. W., Hu, and L. P., Zhang. 2015. “Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery.” Remote Sensing 7 (11): 14680–14707. doi:10.3390/rs71114680.
    • (2015) Remote Sensing , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.S.2    Hu, J.W.3    Zhang, L.P.4
  • 9
    • 84879561232 scopus 로고    scopus 로고
    • Classifying a High Resolution Image of an Urban Area Using Super-Object Information
    • Johnson, B., and Z. X., Xie. 2013. “Classifying a High Resolution Image of an Urban Area Using Super-Object Information.” Isprs Journal of Photogrammetry and Remote Sensing 83: 40–49. doi:10.1016/j.isprsjprs.2013.05.008.
    • (2013) Isprs Journal of Photogrammetry and Remote Sensing , vol.83 , pp. 40-49
    • Johnson, B.1    Xie, Z.X.2
  • 10
    • 85020126914 scopus 로고    scopus 로고
    • ImageNet Classification with Deep Convolutional Neural Networks
    • Krizhevsky, A., I., Sutskever, and G. E., Hinton. 2017. “ImageNet Classification with Deep Convolutional Neural Networks.” Communications of the ACM 60 (6): 84–90. doi:10.1145/3065386.
    • (2017) Communications of the ACM , vol.60 , Issue.6 , pp. 84-90
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 11
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • LeCun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521: 436–444. doi:10.1038/nature14539.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 12
    • 85038939811 scopus 로고    scopus 로고
    • Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network
    • Liu, Y., B., Fang, L., Wang, J., Bai, S., Xiang, and C., Pan. 2018. “Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network.” ISPRS Journal of Photogrammetry and Remote Sensing 145: 78–95. doi:10.1016/j.isprsjprs.2017.12.007.
    • (2018) ISPRS Journal of Photogrammetry and Remote Sensing , vol.145 , pp. 78-95
    • Liu, Y.1    Fang, B.2    Wang, L.3    Bai, J.4    Xiang, S.5    Pan, C.6
  • 13
    • 84945230598 scopus 로고    scopus 로고
    • Fully Convolutional Networks for Semantic Segmentation
    • Long, J., E., Shelhamer, and T., Darrell. 2015. “Fully Convolutional Networks for Semantic Segmentation.” In 2015 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr), Boston, MA. 3431–3440.
    • (2015) Boston, MA , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 14
    • 85053519750 scopus 로고    scopus 로고
    • Very High Resolution Remote Sensing Image Classification with SEEDS-CNN and Scale Effect Analysis for Superpixel CNN Classification
    • Lv, X., D., Ming, Y. Y., Chen, and M., Wang. 2018. “Very High Resolution Remote Sensing Image Classification with SEEDS-CNN and Scale Effect Analysis for Superpixel CNN Classification.” International Journal of Remote Sensing online:1–27. doi:10.1080/01431161.2018.1513666.
    • (2018) International Journal of Remote Sensing
    • Lv, X.1    Ming, D.2    Chen, Y.Y.3    Wang, M.4
  • 16
    • 84898666719 scopus 로고    scopus 로고
    • Forest Mapping through Object-Based Image Analysis of Multispectral and LiDAR Aerial Data
    • Machala, M., and L., Zejdova. 2014. “Forest Mapping through Object-Based Image Analysis of Multispectral and LiDAR Aerial Data.” European Journal of Remote Sensing 47: 117–131. doi:10.5721/EuJRS20144708.
    • (2014) European Journal of Remote Sensing , vol.47 , pp. 117-131
    • Machala, M.1    Zejdova, L.2
  • 18
  • 19
    • 84979775123 scopus 로고    scopus 로고
    • Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification
    • Nogueira, K., O. A. B., Penatti, and J. A., Dos Santos. 2017. “Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification.” Pattern Recognition 61: 539–556. doi:10.1016/j.patcog.2016.07.001.
    • (2017) Pattern Recognition , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.B.2    Dos Santos, J.A.3
  • 20
    • 85048958895 scopus 로고    scopus 로고
    • A Central-Point-Enhanced Convolutional Neural Network for High-Resolution Remote-Sensing Image Classification
    • Pan, X., and J., Zhao. 2017. “A Central-Point-Enhanced Convolutional Neural Network for High-Resolution Remote-Sensing Image Classification.” International Journal of Remote Sensing 38 (23): 6554–6581. doi:10.1080/01431161.2017.1362131.
    • (2017) International Journal of Remote Sensing , vol.38 , Issue.23 , pp. 6554-6581
    • Pan, X.1    Zhao, J.2
  • 21
    • 85048949712 scopus 로고    scopus 로고
    • High-Resolution Remote Sensing Image Classification Method Based on Convolutional Neural Network and Restricted Conditional Random Field
    • Pan, X., and J., Zhao. 2018. “High-Resolution Remote Sensing Image Classification Method Based on Convolutional Neural Network and Restricted Conditional Random Field.” Remote Sensing 10: 6. doi:10.3390/Rs10060920.
    • (2018) Remote Sensing , vol.10 , pp. 6
    • Pan, X.1    Zhao, J.2
  • 22
    • 79953182966 scopus 로고    scopus 로고
    • Object-Based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology
    • Peña-Barragán, J. M., M. K., Ngugi, R. E., Plant, and J., Six. 2011. “Object-Based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology.” Remote Sensing of Environment 115 (6): 1301–1316. doi:10.1016/j.rse.2011.01.009.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.6 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 24
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition
    • Vol
    • Ranzato, M., F. J., Huang, Y. L., Boureau, and Y., LeCun. 2007. “Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition.” In 2007 Ieee Conference on Computer Vision and Pattern Recognition, Minneapolis, MI. 1429-+. Vol 1–8.
    • (2007) Minneapolis, MI , vol.1-8
    • Ranzato, M.1    Huang, F.J.2    Boureau, Y.L.3    LeCun, Y.4
  • 25
    • 85031680076 scopus 로고    scopus 로고
    • Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review
    • Rawat, W., and Z. H., Wang. 2017. “Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review.” Neural Computation 29 (9): 2352–2449. doi:10.1162/neco_a_00990.
    • (2017) Neural Computation , vol.29 , Issue.9 , pp. 2352-2449
    • Rawat, W.1    Wang, Z.H.2
  • 27
    • 84893703794 scopus 로고    scopus 로고
    • Automatic Quick-Shift Method for Color Image Segmentation
    • Salem, M., A. F., Ibrahim, and H. A., Ali. 2013. “Automatic Quick-Shift Method for Color Image Segmentation.” In 2013 8th International Conference on Computer Engineering & Systems (Icces), Cairo, Egypt. 245–251.
    • (2013) Cairo, Egypt , pp. 245-251
    • Salem, M.1    Ibrahim, A.F.2    Ali, H.A.3
  • 28
    • 84875801714 scopus 로고    scopus 로고
    • Automatic Fuzzy Object-Based Analysis of VHSR Images for Urban Objects Extraction
    • Sebari, I., and D. C., He. 2013. “Automatic Fuzzy Object-Based Analysis of VHSR Images for Urban Objects Extraction.” Isprs Journal of Photogrammetry and Remote Sensing 79: 171–184. doi:10.1016/j.isprsjprs.2013.02.006.
    • (2013) Isprs Journal of Photogrammetry and Remote Sensing , vol.79 , pp. 171-184
    • Sebari, I.1    He, D.C.2
  • 30
    • 56749131266 scopus 로고    scopus 로고
    • Quick Shift and Kernel Methods for Mode Seeking
    • Vedaldi, A., and S., Soatto. 2008. “Quick Shift and Kernel Methods for Mode Seeking.” In Computer Vision - Eccv 2008, Pt Iv, Proceedings, Marseille, France. 705–718. Vol. 5305.
    • (2008) Marseille, France , vol.5305 , pp. 705-718
    • Vedaldi, A.1    Soatto, S.2
  • 31
    • 85028507989 scopus 로고    scopus 로고
    • A Joint Convolutional Neural Networks and Context Transfer for Street Scenes Labeling
    • Wang, Q., J. Y., Gao, and Y., Yuan. 2018. “A Joint Convolutional Neural Networks and Context Transfer for Street Scenes Labeling.” Ieee Transactions on Intelligent Transportation Systems 19 (5): 1457–1470. doi:10.1109/Tits.2017.2726546.
    • (2018) Ieee Transactions on Intelligent Transportation Systems , vol.19 , Issue.5 , pp. 1457-1470
    • Wang, Q.1    Gao, J.Y.2    Yuan, Y.3
  • 32
    • 85044181374 scopus 로고    scopus 로고
    • Automatic Building Segmentation of Aerial Imagery UsingMulti-Constraint Fully Convolutional Networks
    • Wu, G. M., X. W., Shao, Z. L., Guo, Q., Chen, W., Yuan, X. D., Shi, Y. W., Xu, and R., Shibasaki. 2018. “Automatic Building Segmentation of Aerial Imagery UsingMulti-Constraint Fully Convolutional Networks.” Remote Sensing 10: 3. doi:10.3390/Rs10030407.
    • (2018) Remote Sensing , vol.10 , pp. 3
    • Wu, G.M.1    Shao, X.W.2    Guo, Z.L.3    Chen, Q.4    Yuan, W.5    Shi, X.D.6    Xu, Y.W.7    Shibasaki, R.8
  • 34
    • 85050505107 scopus 로고    scopus 로고
    • Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for Aerial Scene Classification
    • Yu, Y. L., and F. X., Liu. 2018. “Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for Aerial Scene Classification.” Remote Sensing 10 (7): 1158. doi:10.3390/Rs10071158.
    • (2018) Remote Sensing , vol.10 , Issue.7
    • Yu, Y.L.1    Liu, F.X.2
  • 35
    • 85048263912 scopus 로고    scopus 로고
    • A Supervised Approach for Simultaneous Segmentation and Classification of Remote Sensing Images
    • Zanotta, D. C., M., Zortea, and M. P., Ferreira. 2018. “A Supervised Approach for Simultaneous Segmentation and Classification of Remote Sensing Images.” Isprs Journal of Photogrammetry and Remote Sensing 142: 162–173. doi:10.1016/j.isprsjprs.2018.05.021.
    • (2018) Isprs Journal of Photogrammetry and Remote Sensing , vol.142 , pp. 162-173
    • Zanotta, D.C.1    Zortea, M.2    Ferreira, M.P.3
  • 36
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and Understanding Convolutional Networks
    • Zeiler, M. D., and R., Fergus. 2014. “Visualizing and Understanding Convolutional Networks.” In Computer Vision - Eccv 2014, Pt I 8689, Zurich, Switzerland. 818–833.
    • (2014) Zurich, Switzerland , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 38
    • 85049299169 scopus 로고    scopus 로고
    • An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification
    • Zhang, C., I., Sargent, H., Li, A., Gardiner, J., Hare, and P. M., Atkinson. 2018b. “An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification.” Remote Sensing of Environment 216: 57–70. doi:10.1016/j.rse.2018.06.034.
    • (2018) Remote Sensing of Environment , vol.216 , pp. 57-70
    • Zhang, C.1    Sargent, I.2    Li, H.3    Gardiner, A.4    Hare, J.5    Atkinson, P.M.6
  • 39
    • 84945898896 scopus 로고    scopus 로고
    • Scene Classification via a Gradient Boosting Random Convolutional Network Framework
    • Zhang, F., B., Du, and L. P., Zhang. 2016. “Scene Classification via a Gradient Boosting Random Convolutional Network Framework.” Ieee Transactions on Geoscience and Remote Sensing 54 (3): 1793–1802. doi:10.1109/Tgrs.2015.2488681.
    • (2016) Ieee Transactions on Geoscience and Remote Sensing , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.