-
1
-
-
78650884606
-
Building Detection Using Directional Spatial Constraints
-
Akçay, H. G., and S., Aksoy. 2010. “Building Detection Using Directional Spatial Constraints.” In 2010 Ieee International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, United States. 1932–1935. doi:10.1109/Igarss.2010.5652842.
-
(2010)
Honolulu, Hawaii, United States
, pp. 1932-1935
-
-
Akçay, H.G.1
Aksoy, S.2
-
2
-
-
73249139477
-
Object Based Image Analysis for Remote Sensing
-
Blaschke, T., 2010. “Object Based Image Analysis for Remote Sensing.” Isprs Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
-
(2010)
Isprs Journal of Photogrammetry and Remote Sensing
, vol.65
, Issue.1
, pp. 2-16
-
-
Blaschke, T.1
-
3
-
-
84890209110
-
Geographic Object-Based Image Analysis–Towards a New Paradigm
-
Blaschke, T., G. J., Hay, M., Kelly, S., Lang, P., Hofmann, E., Addink, R. Q., Feitosa, et al. 2014. “Geographic Object-Based Image Analysis–Towards a New Paradigm.” Isprs Journal of Photogrammetry and Remote Sensing 87: 180–191. doi:10.1016/j.isprsjprs.2013.09.014.
-
(2014)
Isprs Journal of Photogrammetry and Remote Sensing
, vol.87
, pp. 180-191
-
-
Blaschke, T.1
Hay, G.J.2
Kelly, M.3
Lang, S.4
Hofmann, P.5
Addink, E.6
Feitosa, R.Q.7
-
4
-
-
85019898857
-
Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network
-
Fu, G., C. J., Liu, R., Zhou, T., Sun, and Q. J., Zhang. 2017. “Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network.” Remote Sensing 9: 5. doi:10.3390/Rs9050498.
-
(2017)
Remote Sensing
, vol.9
, pp. 5
-
-
Fu, G.1
Liu, C.J.2
Zhou, R.3
Sun, T.4
Zhang, Q.J.5
-
5
-
-
84980022872
-
A GEOBIA Methodology for Fragmented Agricultural Landscapes
-
Garcia-Pedrero, A., C., Gonzalo-Martin, D., Fonseca-Luengo, and M., Lillo-Saavedra. 2015. “A GEOBIA Methodology for Fragmented Agricultural Landscapes.” Remote Sensing 7 (1): 767–787. doi:10.3390/rs70100767.
-
(2015)
Remote Sensing
, vol.7
, Issue.1
, pp. 767-787
-
-
Garcia-Pedrero, A.1
Gonzalo-Martin, C.2
Fonseca-Luengo, D.3
Lillo-Saavedra, M.4
-
6
-
-
33745805403
-
A Fast Learning Algorithm for Deep Belief Nets
-
Hinton, G. E., S., Osindero, and Y. W., Teh. 2006. “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation 18 (7): 1527–1554. doi:10.1162/neco.2006.18.7.1527.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
7
-
-
84950141946
-
Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
-
Hu, F., G. S., Xia, J. W., Hu, and L. P., Zhang. 2015. “Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery.” Remote Sensing 7 (11): 14680–14707. doi:10.3390/rs71114680.
-
(2015)
Remote Sensing
, vol.7
, Issue.11
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.S.2
Hu, J.W.3
Zhang, L.P.4
-
9
-
-
84879561232
-
Classifying a High Resolution Image of an Urban Area Using Super-Object Information
-
Johnson, B., and Z. X., Xie. 2013. “Classifying a High Resolution Image of an Urban Area Using Super-Object Information.” Isprs Journal of Photogrammetry and Remote Sensing 83: 40–49. doi:10.1016/j.isprsjprs.2013.05.008.
-
(2013)
Isprs Journal of Photogrammetry and Remote Sensing
, vol.83
, pp. 40-49
-
-
Johnson, B.1
Xie, Z.X.2
-
10
-
-
85020126914
-
ImageNet Classification with Deep Convolutional Neural Networks
-
Krizhevsky, A., I., Sutskever, and G. E., Hinton. 2017. “ImageNet Classification with Deep Convolutional Neural Networks.” Communications of the ACM 60 (6): 84–90. doi:10.1145/3065386.
-
(2017)
Communications of the ACM
, vol.60
, Issue.6
, pp. 84-90
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
11
-
-
84930630277
-
Deep Learning
-
LeCun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521: 436–444. doi:10.1038/nature14539.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
12
-
-
85038939811
-
Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network
-
Liu, Y., B., Fang, L., Wang, J., Bai, S., Xiang, and C., Pan. 2018. “Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network.” ISPRS Journal of Photogrammetry and Remote Sensing 145: 78–95. doi:10.1016/j.isprsjprs.2017.12.007.
-
(2018)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.145
, pp. 78-95
-
-
Liu, Y.1
Fang, B.2
Wang, L.3
Bai, J.4
Xiang, S.5
Pan, C.6
-
13
-
-
84945230598
-
Fully Convolutional Networks for Semantic Segmentation
-
Long, J., E., Shelhamer, and T., Darrell. 2015. “Fully Convolutional Networks for Semantic Segmentation.” In 2015 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr), Boston, MA. 3431–3440.
-
(2015)
Boston, MA
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
14
-
-
85053519750
-
Very High Resolution Remote Sensing Image Classification with SEEDS-CNN and Scale Effect Analysis for Superpixel CNN Classification
-
Lv, X., D., Ming, Y. Y., Chen, and M., Wang. 2018. “Very High Resolution Remote Sensing Image Classification with SEEDS-CNN and Scale Effect Analysis for Superpixel CNN Classification.” International Journal of Remote Sensing online:1–27. doi:10.1080/01431161.2018.1513666.
-
(2018)
International Journal of Remote Sensing
-
-
Lv, X.1
Ming, D.2
Chen, Y.Y.3
Wang, M.4
-
15
-
-
85021219961
-
A Review of Supervised Object-Based Land-Cover Image Classification
-
Ma, L., M. C., Li, X. X., Ma, L., Cheng, P. J., Du, and Y. X., Liu. 2017. “A Review of Supervised Object-Based Land-Cover Image Classification.” Isprs Journal of Photogrammetry and Remote Sensing 130: 277–293. doi:10.1016/j.isprsjprs.2017.06.001.
-
(2017)
Isprs Journal of Photogrammetry and Remote Sensing
, vol.130
, pp. 277-293
-
-
Ma, L.1
Li, M.C.2
Ma, X.X.3
Cheng, L.4
Du, P.J.5
Liu, Y.X.6
-
16
-
-
84898666719
-
Forest Mapping through Object-Based Image Analysis of Multispectral and LiDAR Aerial Data
-
Machala, M., and L., Zejdova. 2014. “Forest Mapping through Object-Based Image Analysis of Multispectral and LiDAR Aerial Data.” European Journal of Remote Sensing 47: 117–131. doi:10.5721/EuJRS20144708.
-
(2014)
European Journal of Remote Sensing
, vol.47
, pp. 117-131
-
-
Machala, M.1
Zejdova, L.2
-
17
-
-
85020432777
-
Recurrent Neural Networks to Correct Satellite Image Classification Maps
-
Maggiori, E., G., Charpiat, Y., Tarabalka, and P., Alliez. 2017. “Recurrent Neural Networks to Correct Satellite Image Classification Maps.” Ieee Transactions on Geoscience and Remote Sensing 55 (9): 4962–4971. doi:10.1109/Tgrs.2017.2697453.
-
(2017)
Ieee Transactions on Geoscience and Remote Sensing
, vol.55
, Issue.9
, pp. 4962-4971
-
-
Maggiori, E.1
Charpiat, G.2
Tarabalka, Y.3
Alliez, P.4
-
18
-
-
85021147779
-
Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring
-
Müllerová, J., J., Bruna, T., Bartalos, P., Dvorak, M., Vitkova, and P., Pysek. 2017. “Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring.” Frontiers in Plant Science 8. doi:10.3389/Fpls.2017.00887.
-
(2017)
Frontiers in Plant Science
, vol.8
-
-
Müllerová, J.1
Bruna, J.2
Bartalos, T.3
Dvorak, P.4
Vitkova, M.5
Pysek, P.6
-
19
-
-
84979775123
-
Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification
-
Nogueira, K., O. A. B., Penatti, and J. A., Dos Santos. 2017. “Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification.” Pattern Recognition 61: 539–556. doi:10.1016/j.patcog.2016.07.001.
-
(2017)
Pattern Recognition
, vol.61
, pp. 539-556
-
-
Nogueira, K.1
Penatti, O.A.B.2
Dos Santos, J.A.3
-
20
-
-
85048958895
-
A Central-Point-Enhanced Convolutional Neural Network for High-Resolution Remote-Sensing Image Classification
-
Pan, X., and J., Zhao. 2017. “A Central-Point-Enhanced Convolutional Neural Network for High-Resolution Remote-Sensing Image Classification.” International Journal of Remote Sensing 38 (23): 6554–6581. doi:10.1080/01431161.2017.1362131.
-
(2017)
International Journal of Remote Sensing
, vol.38
, Issue.23
, pp. 6554-6581
-
-
Pan, X.1
Zhao, J.2
-
21
-
-
85048949712
-
High-Resolution Remote Sensing Image Classification Method Based on Convolutional Neural Network and Restricted Conditional Random Field
-
Pan, X., and J., Zhao. 2018. “High-Resolution Remote Sensing Image Classification Method Based on Convolutional Neural Network and Restricted Conditional Random Field.” Remote Sensing 10: 6. doi:10.3390/Rs10060920.
-
(2018)
Remote Sensing
, vol.10
, pp. 6
-
-
Pan, X.1
Zhao, J.2
-
22
-
-
79953182966
-
Object-Based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology
-
Peña-Barragán, J. M., M. K., Ngugi, R. E., Plant, and J., Six. 2011. “Object-Based Crop Identification Using Multiple Vegetation Indices, Textural Features and Crop Phenology.” Remote Sensing of Environment 115 (6): 1301–1316. doi:10.1016/j.rse.2011.01.009.
-
(2011)
Remote Sensing of Environment
, vol.115
, Issue.6
, pp. 1301-1316
-
-
Peña-Barragán, J.M.1
Ngugi, M.K.2
Plant, R.E.3
Six, J.4
-
23
-
-
85014553885
-
Scene Classification for Aerial Images Based on CNN Using Sparse Coding Technique
-
Qayyum, A., A. S., Malik, N. M., Saad, M., Iqbal, M. F., Abdullah, W., Rasheed, T. A. B. R., Abdullah, and M. Y., Bin Jafaar. 2017. “Scene Classification for Aerial Images Based on CNN Using Sparse Coding Technique.” International Journal of Remote Sensing 38 (8–10): 2662–2685. doi:10.1080/01431161.2017.1296206.
-
(2017)
International Journal of Remote Sensing
, vol.38
, Issue.8-10
, pp. 2662-2685
-
-
Qayyum, A.1
Malik, A.S.2
Saad, N.M.3
Iqbal, M.4
Abdullah, M.F.5
Rasheed, W.6
Abdullah, T.A.B.R.7
Bin Jafaar, M.Y.8
-
24
-
-
34948870900
-
Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition
-
Vol
-
Ranzato, M., F. J., Huang, Y. L., Boureau, and Y., LeCun. 2007. “Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition.” In 2007 Ieee Conference on Computer Vision and Pattern Recognition, Minneapolis, MI. 1429-+. Vol 1–8.
-
(2007)
Minneapolis, MI
, vol.1-8
-
-
Ranzato, M.1
Huang, F.J.2
Boureau, Y.L.3
LeCun, Y.4
-
25
-
-
85031680076
-
Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review
-
Rawat, W., and Z. H., Wang. 2017. “Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review.” Neural Computation 29 (9): 2352–2449. doi:10.1162/neco_a_00990.
-
(2017)
Neural Computation
, vol.29
, Issue.9
, pp. 2352-2449
-
-
Rawat, W.1
Wang, Z.H.2
-
26
-
-
84922343800
-
Deep Convolutional Neural Networks for Large-Scale Speech Tasks
-
Sainath, T. N., B., Kingsbury, G., Saon, H., Soltau, A. R., Mohamed, G., Dahl, and B., Ramabhadran. 2015. “Deep Convolutional Neural Networks for Large-Scale Speech Tasks.” Neural Networks 64: 39–48. doi:10.1016/j.neunet.2014.08.005.
-
(2015)
Neural Networks
, vol.64
, pp. 39-48
-
-
Sainath, T.N.1
Kingsbury, B.2
Saon, G.3
Soltau, H.4
Mohamed, A.R.5
Dahl, G.6
Ramabhadran, B.7
-
27
-
-
84893703794
-
Automatic Quick-Shift Method for Color Image Segmentation
-
Salem, M., A. F., Ibrahim, and H. A., Ali. 2013. “Automatic Quick-Shift Method for Color Image Segmentation.” In 2013 8th International Conference on Computer Engineering & Systems (Icces), Cairo, Egypt. 245–251.
-
(2013)
Cairo, Egypt
, pp. 245-251
-
-
Salem, M.1
Ibrahim, A.F.2
Ali, H.A.3
-
28
-
-
84875801714
-
Automatic Fuzzy Object-Based Analysis of VHSR Images for Urban Objects Extraction
-
Sebari, I., and D. C., He. 2013. “Automatic Fuzzy Object-Based Analysis of VHSR Images for Urban Objects Extraction.” Isprs Journal of Photogrammetry and Remote Sensing 79: 171–184. doi:10.1016/j.isprsjprs.2013.02.006.
-
(2013)
Isprs Journal of Photogrammetry and Remote Sensing
, vol.79
, pp. 171-184
-
-
Sebari, I.1
He, D.C.2
-
29
-
-
84937522268
-
Going Deeper with Convolutions
-
Szegedy, C., W., Liu, Y. Q., Jia, P., Sermanet, S., Reed, D., Anguelov, D., Erhan, V., Vanhoucke, and A., Rabinovich. 2015. “Going Deeper with Convolutions.” In 2015 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr), Boston, MA. 1–9.
-
(2015)
Boston, MA
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.Q.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
30
-
-
56749131266
-
Quick Shift and Kernel Methods for Mode Seeking
-
Vedaldi, A., and S., Soatto. 2008. “Quick Shift and Kernel Methods for Mode Seeking.” In Computer Vision - Eccv 2008, Pt Iv, Proceedings, Marseille, France. 705–718. Vol. 5305.
-
(2008)
Marseille, France
, vol.5305
, pp. 705-718
-
-
Vedaldi, A.1
Soatto, S.2
-
31
-
-
85028507989
-
A Joint Convolutional Neural Networks and Context Transfer for Street Scenes Labeling
-
Wang, Q., J. Y., Gao, and Y., Yuan. 2018. “A Joint Convolutional Neural Networks and Context Transfer for Street Scenes Labeling.” Ieee Transactions on Intelligent Transportation Systems 19 (5): 1457–1470. doi:10.1109/Tits.2017.2726546.
-
(2018)
Ieee Transactions on Intelligent Transportation Systems
, vol.19
, Issue.5
, pp. 1457-1470
-
-
Wang, Q.1
Gao, J.Y.2
Yuan, Y.3
-
32
-
-
85044181374
-
Automatic Building Segmentation of Aerial Imagery UsingMulti-Constraint Fully Convolutional Networks
-
Wu, G. M., X. W., Shao, Z. L., Guo, Q., Chen, W., Yuan, X. D., Shi, Y. W., Xu, and R., Shibasaki. 2018. “Automatic Building Segmentation of Aerial Imagery UsingMulti-Constraint Fully Convolutional Networks.” Remote Sensing 10: 3. doi:10.3390/Rs10030407.
-
(2018)
Remote Sensing
, vol.10
, pp. 3
-
-
Wu, G.M.1
Shao, X.W.2
Guo, Z.L.3
Chen, Q.4
Yuan, W.5
Shi, X.D.6
Xu, Y.W.7
Shibasaki, R.8
-
33
-
-
85018642692
-
AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification
-
Xia, G. S., J. W., Hu, F., Hu, B. G., Shi, X., Bai, Y. F., Zhong, L. P., Zhang, and X. Q., Lu. 2017. “AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification.” Ieee Transactions on Geoscience and Remote Sensing 55 (7): 3965–3981. doi:10.1109/Tgrs.2017.2685945.
-
(2017)
Ieee Transactions on Geoscience and Remote Sensing
, vol.55
, Issue.7
, pp. 3965-3981
-
-
Xia, G.S.1
Hu, J.W.2
Hu, F.3
Shi, B.G.4
Bai, X.5
Zhong, Y.F.6
Zhang, L.P.7
Lu, X.Q.8
-
34
-
-
85050505107
-
Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for Aerial Scene Classification
-
Yu, Y. L., and F. X., Liu. 2018. “Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for Aerial Scene Classification.” Remote Sensing 10 (7): 1158. doi:10.3390/Rs10071158.
-
(2018)
Remote Sensing
, vol.10
, Issue.7
-
-
Yu, Y.L.1
Liu, F.X.2
-
35
-
-
85048263912
-
A Supervised Approach for Simultaneous Segmentation and Classification of Remote Sensing Images
-
Zanotta, D. C., M., Zortea, and M. P., Ferreira. 2018. “A Supervised Approach for Simultaneous Segmentation and Classification of Remote Sensing Images.” Isprs Journal of Photogrammetry and Remote Sensing 142: 162–173. doi:10.1016/j.isprsjprs.2018.05.021.
-
(2018)
Isprs Journal of Photogrammetry and Remote Sensing
, vol.142
, pp. 162-173
-
-
Zanotta, D.C.1
Zortea, M.2
Ferreira, M.P.3
-
36
-
-
84906489074
-
Visualizing and Understanding Convolutional Networks
-
Zeiler, M. D., and R., Fergus. 2014. “Visualizing and Understanding Convolutional Networks.” In Computer Vision - Eccv 2014, Pt I 8689, Zurich, Switzerland. 818–833.
-
(2014)
Zurich, Switzerland
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
37
-
-
85026643598
-
A Hybrid MLP-CNN Classifier for Very Fine Resolution Remotely Sensed Image Classification
-
Zhang, C., X., Pan, H. P., Li, A., Gardiner, I., Sargent, J., Hare, and P. M., Atkinson. 2018a. “A Hybrid MLP-CNN Classifier for Very Fine Resolution Remotely Sensed Image Classification.” Isprs Journal of Photogrammetry and Remote Sensing 140: 133–144. doi:10.1016/j.isprsjprs.2017.07.014.
-
(2018)
Isprs Journal of Photogrammetry and Remote Sensing
, vol.140
, pp. 133-144
-
-
Zhang, C.1
Pan, X.2
Li, H.P.3
Gardiner, A.4
Sargent, I.5
Hare, J.6
Atkinson, P.M.7
-
38
-
-
85049299169
-
An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification
-
Zhang, C., I., Sargent, H., Li, A., Gardiner, J., Hare, and P. M., Atkinson. 2018b. “An Object-Based Convolutional Neural Network (OCNN) for Urban Land Use Classification.” Remote Sensing of Environment 216: 57–70. doi:10.1016/j.rse.2018.06.034.
-
(2018)
Remote Sensing of Environment
, vol.216
, pp. 57-70
-
-
Zhang, C.1
Sargent, I.2
Li, H.3
Gardiner, A.4
Hare, J.5
Atkinson, P.M.6
-
39
-
-
84945898896
-
Scene Classification via a Gradient Boosting Random Convolutional Network Framework
-
Zhang, F., B., Du, and L. P., Zhang. 2016. “Scene Classification via a Gradient Boosting Random Convolutional Network Framework.” Ieee Transactions on Geoscience and Remote Sensing 54 (3): 1793–1802. doi:10.1109/Tgrs.2015.2488681.
-
(2016)
Ieee Transactions on Geoscience and Remote Sensing
, vol.54
, Issue.3
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.P.3
-
40
-
-
85017136781
-
Object-Based Convolutional Neural Network for High-Resolution Imagery Classification
-
Zhao, W. Z., S. H., Du, and W. J., Emery. 2017. “Object-Based Convolutional Neural Network for High-Resolution Imagery Classification.” Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (7): 3386–3396. doi:10.1109/Jstars.2017.2680324.
-
(2017)
Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.10
, Issue.7
, pp. 3386-3396
-
-
Zhao, W.Z.1
Du, S.H.2
Emery, W.J.3
|