-
1
-
-
84866657764
-
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
-
Achanta, R., A., Shaji, K., Smith, A., Lucchi, P., Fua, and S., Susstrunk. 2012. “SLIC Superpixels Compared to State-of-the-Art Superpixel Methods.” IEEE Transactions on Pattern Analysis & Machine Intelligence 34 (11): 2274–2282. doi:10.1109/TPAMI.2012.120
-
(2012)
IEEE Transactions on Pattern Analysis & Machine Intelligence
, vol.34
, Issue.11
, pp. 2274-2282
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Susstrunk, S.6
-
2
-
-
79955664556
-
-
Technical Report 149300. EPFL
-
Achanta, R., A., Shaji, K., Smith, A., Lucchi, P., Fua, and S., Süsstrunk. 2010. SLIC Superpixels. Technical Report 149300. EPFL
-
(2010)
SLIC Superpixels
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Süsstrunk, S.6
-
3
-
-
84862886508
-
Introduction to the GEOBIA 2010 Special Issue: From Pixels to Geographic Objects in Remote Sensing Image Analysis
-
Addink, E. A., F. M. B., Van Coillie, and S. M., De Jong. 2012. “Introduction to the GEOBIA 2010 Special Issue: From Pixels to Geographic Objects in Remote Sensing Image Analysis.” International Journal of Applied Earth Observation & Geoinformation 15 (1): 1–6. doi:10.1016/j.jag.2011.12.001
-
(2012)
International Journal of Applied Earth Observation & Geoinformation
, vol.15
, Issue.1
, pp. 1-6
-
-
Addink, E.A.1
Van Coillie, F.M.B.2
De Jong, S.M.3
-
4
-
-
85007246671
-
On the Performance of GoogLeNet and AlexNet Applied to Sketches
-
Ballester, P., and R. M., Araujo. 2016. “On the Performance of GoogLeNet and AlexNet Applied to Sketches.” Paper presented at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona USA, February 12–17
-
(2016)
Paper presented at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona USA, February 12–17
-
-
Ballester, P.1
Araujo, R.M.2
-
5
-
-
84946553918
-
SEEDS: Superpixels Extracted via Energy-Driven Sampling
-
Bergh, M. V. D., X., Boix, G., Roig, B., De Capitani, and L., Van Gool. 2012. “SEEDS: Superpixels Extracted via Energy-Driven Sampling.” International Journal of Computer Vision, 111 (3): 298–314
-
(2012)
International Journal of Computer Vision, 111 (3): 298–314
-
-
Bergh, M.V.D.1
Boix, X.2
Roig, G.3
De Capitani, B.4
Van Gool, L.5
-
6
-
-
84890209110
-
Geographic Object-Based Image Analysis - Towards a New Paradigm
-
Blaschke, T., G. J., Hay, M., Kelly, S., Lang, P., Hofmann, E., Addink, F. R., Queiroz, F. V., der Meer, H. V., der Werff, and C. F., Van. 2014. “Geographic Object-Based Image Analysis - Towards a New Paradigm.” Isprs Journal of Photogrammetry & Remote Sensing 87 (100): 180–191. doi:10.1016/j.isprsjprs.2013.09.014
-
(2014)
Isprs Journal of Photogrammetry & Remote Sensing
, vol.87
, Issue.100
, pp. 180-191
-
-
Blaschke, T.1
Hay, G.J.2
Kelly, M.3
Lang, S.4
Hofmann, P.5
Addink, E.6
Queiroz, F.R.7
der Meer, F.V.8
der Werff, H.V.9
Van, C.F.10
-
7
-
-
85007427844
-
Deep Convolutional Networks with Superpixel Segmentation for Hyperspectral Image Classification
-
Cao, J., Z., Chen, and B., Wang. 2016. “Deep Convolutional Networks with Superpixel Segmentation for Hyperspectral Image Classification.” Paper presented at the Geoscience and Remote Sensing Symposium, Beijing, China, July 10–15
-
(2016)
Paper presented at the Geoscience and Remote Sensing Symposium, Beijing, China, July 10–15
-
-
Cao, J.1
Chen, Z.2
Wang, B.3
-
8
-
-
85021764029
-
Linear Spectral Clustering Superpixel
-
Chen, J., Z., Li, and B., Huang. 2017. “Linear Spectral Clustering Superpixel.” IEEE Trans Image Process PP, no. 99: 3317–3330. doi:10.1109/TIP.2017.2651389
-
(2017)
IEEE Trans Image Process PP
, Issue.99
, pp. 3317-3330
-
-
Chen, J.1
Li, Z.2
Huang, B.3
-
9
-
-
85053535424
-
-
Das, A., S., Ghosh, R., Sarkhel, S., Choudhuri, N., Das, and M., Nasipuri. 2018. “Combining Multi-level Contexts of Superpixel using Convolutional Neural Networks to perform Natural Scene Labeling.”
-
(2018)
Combining Multi-level Contexts of Superpixel using Convolutional Neural Networks to perform Natural Scene Labeling
-
-
Das, A.1
Ghosh, S.2
Sarkhel, R.3
Choudhuri, S.4
Das, N.5
Nasipuri, M.6
-
10
-
-
84892987748
-
Automatic Identification of Agricultural Terraces through Object-Oriented Analysis of Very High Resolution DSMs and Multispectral Imagery Obtained from an Unmanned Aerial Vehicle
-
Diazvarela, R. A., P. J., Zarcotejada, V., Angileri, and P., Loudjani. 2014. “Automatic Identification of Agricultural Terraces through Object-Oriented Analysis of Very High Resolution DSMs and Multispectral Imagery Obtained from an Unmanned Aerial Vehicle.” Journal of Environmental Management 134 (4): 117–126. doi:10.1016/j.jenvman.2014.01.006
-
(2014)
Journal of Environmental Management
, vol.134
, Issue.4
, pp. 117-126
-
-
Diazvarela, R.A.1
Zarcotejada, P.J.2
Angileri, V.3
Loudjani, P.4
-
12
-
-
84980022872
-
A GEOBIA Methodology for Fragmented Agricultural Landscapes
-
Garciapedrero, A., C., Gonzalomartin, D., Fonsecaluengo, and M., Lillosaavedra. 2015. “A GEOBIA Methodology for Fragmented Agricultural Landscapes.” Remote Sensing 7 (1): 767–787. doi:10.3390/rs70100767
-
(2015)
Remote Sensing
, vol.7
, Issue.1
, pp. 767-787
-
-
Garciapedrero, A.1
Gonzalomartin, C.2
Fonsecaluengo, D.3
Lillosaavedra, M.4
-
13
-
-
85041077226
-
Deep Learning for Superpixel-Based Classification of Remote Sensing Images
-
Gonzalo-Martin, C., A., Garcia-Pedrero, M., Lillo-Saavedra, and E., Menasalvas. 2016. “Deep Learning for Superpixel-Based Classification of Remote Sensing Images.” Paper presented at the GEOBIA 2016: Solutions and Synergies, Enschede, Holland, September 14–16
-
(2016)
Paper presented at the GEOBIA 2016: Solutions and Synergies, Enschede, Holland, September 14–16
-
-
Gonzalo-Martin, C.1
Garcia-Pedrero, A.2
Lillo-Saavedra, M.3
Menasalvas, E.4
-
14
-
-
84878142093
-
Objects Multiscale Characterization: A Tool for High Spatial Resolution Image Classification
-
Gonzalo-Martín, C., and M., Lillo-Saavedra. 2012. “Objects Multiscale Characterization: A Tool for High Spatial Resolution Image Classification.” Revista De Teledeteccion, no. 38: 19–27
-
(2012)
Revista De Teledeteccion
, Issue.38
, pp. 19-27
-
-
Gonzalo-Martín, C.1
Lillo-Saavedra, M.2
-
15
-
-
84930606407
-
Local Optimal Scale in a Hierarchical Segmentation Method for Satellite Images
-
Gonzalo-Martín, C., M., Lillo-Saavedra, E., Menasalvas, D., Fonseca-Luengo, A., García-Pedrero, and R., Costumero. 2016. “Local Optimal Scale in a Hierarchical Segmentation Method for Satellite Images.” Journal of Intelligent Information Systems 46 (3): 517–529. doi:10.1007/s10844-015-0365-4
-
(2016)
Journal of Intelligent Information Systems
, vol.46
, Issue.3
, pp. 517-529
-
-
Gonzalo-Martín, C.1
Lillo-Saavedra, M.2
Menasalvas, E.3
Fonseca-Luengo, D.4
García-Pedrero, A.5
Costumero, R.6
-
17
-
-
33746600649
-
Reducing the Dimensionality of Data with Neural Networks
-
Hinton, G. E., and R. R., Salakhutdinov. 2006. “Reducing the Dimensionality of Data with Neural Networks.” Science 313 (5786): 504–507. doi:10.1126/science.1127647
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
18
-
-
85034410882
-
Fractional Cover Mapping of Spruce and Pine at 1 Ha Resolution Combining Very High and Medium Spatial Resolution Satellite Imagery
-
Immitzer, M., S., Böck, K., Einzmann, F., Vuolo, N., Pinnel, A., Wallner, and C., Atzberger. 2017. “Fractional Cover Mapping of Spruce and Pine at 1 Ha Resolution Combining Very High and Medium Spatial Resolution Satellite Imagery.” Remote Sensing of Environment 204: 690–703
-
(2017)
Remote Sensing of Environment
, vol.204-703
-
-
Immitzer, M.1
Böck, S.2
Einzmann, K.3
Vuolo, F.4
Pinnel, N.5
Wallner, A.6
Atzberger, C.7
-
19
-
-
85040698389
-
Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through Meta-Analysis and Regression Tree Modeling
-
Johnson, B., and S., Jozdani. 2018. “Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through Meta-Analysis and Regression Tree Modeling.” Remote Sensing 10 (1): 73. doi:10.3390/rs10010073
-
(2018)
Remote Sensing
, vol.10
, Issue.1
-
-
Johnson, B.1
Jozdani, S.2
-
20
-
-
84869054245
-
High-Resolution Urban Land-Cover Classification Using a Competitive Multi-Scale Object-Based Approach
-
Johnson, B. A., 2013. “High-Resolution Urban Land-Cover Classification Using a Competitive Multi-Scale Object-Based Approach.” Remote Sensing Letters 4 (2): 131–140. doi:10.1080/2150704X.2012.705440
-
(2013)
Remote Sensing Letters
, vol.4
, Issue.2
, pp. 131-140
-
-
Johnson, B.A.1
-
21
-
-
85040694926
-
A Regression Modelling Approach for Optimizing Segmentation Scale Parameters to Extract Buildings of Different Sizes
-
Jozdani, S. E., M., Momeni, B. A., Johnson, and M., Sattari. 2018. “A Regression Modelling Approach for Optimizing Segmentation Scale Parameters to Extract Buildings of Different Sizes.” International Journal of Remote Sensing 39 (3): 684–703. doi:10.1080/01431161.2017.1390273
-
(2018)
International Journal of Remote Sensing
, vol.39
, Issue.3
, pp. 684-703
-
-
Jozdani, S.E.1
Momeni, M.2
Johnson, B.A.3
Sattari, M.4
-
22
-
-
79957608758
-
Multi-Scale GEOBIA with Very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects
-
Kim, M., T. A., Warner, M., Madden, and D. S., Atkinson. 2011. “Multi-Scale GEOBIA with Very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects.” International Journal of Remote Sensing 32 (10): 2825–2850. doi:10.1080/01431161003745608
-
(2011)
International Journal of Remote Sensing
, vol.32
, Issue.10
, pp. 2825-2850
-
-
Kim, M.1
Warner, T.A.2
Madden, M.3
Atkinson, D.S.4
-
23
-
-
80052965804
-
Extraction of Complex Patterns from Multiresolution Remote Sensing Images: A Hierarchical Top-Down Methodology
-
Kurtz, C., N., Passat, P., Gançarski, and A., Puissant. 2018. “Extraction of Complex Patterns from Multiresolution Remote Sensing Images: A Hierarchical Top-Down Methodology.” Pattern Recognition 45 (2): 685–706. doi:10.1016/j.patcog.2011.07.017
-
(2018)
Pattern Recognition
, vol.45
, Issue.2
, pp. 685-706
-
-
Kurtz, C.1
Passat, N.2
Gançarski, P.3
Puissant, A.4
-
24
-
-
84864510265
-
A Comparison of Three Feature Selection Methods for Object-Based Classification of Sub-Decimeter Resolution UltraCam-L Imagery
-
Laliberte, A. S., D. M., Browning, and A., Rango. 2012. “A Comparison of Three Feature Selection Methods for Object-Based Classification of Sub-Decimeter Resolution UltraCam-L Imagery.” International Journal of Applied Earth Observation & Geoinformation 15 (4): 70–78. doi:10.1016/j.jag.2011.05.011
-
(2012)
International Journal of Applied Earth Observation & Geoinformation
, vol.15
, Issue.4
, pp. 70-78
-
-
Laliberte, A.S.1
Browning, D.M.2
Rango, A.3
-
25
-
-
0030737097
-
Face Recognition: A Convolutional Neural-Network Approach
-
Lawrence, S., C. L., Giles, A. C., Tsoi, and A. D., Back. 1997. “Face Recognition: A Convolutional Neural-Network Approach.” IEEE Transactions on Neural Networks 8 (1): 98–113. doi:10.1109/72.554195
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.1
, pp. 98-113
-
-
Lawrence, S.1
Giles, C.L.2
Tsoi, A.C.3
Back, A.D.4
-
26
-
-
84930630277
-
Deep Learning
-
Lecun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521 (7553): 436. doi:10.1038/nature14539
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
27
-
-
85017406334
-
A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments
-
Li, M., L., Ma, T., Blaschke, L., Cheng, and D., Tiede. 2016. “A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments.” International Journal of Applied Earth Observations & Geoinformation 49: 87–98. doi:10.1016/j.jag.2016.01.011
-
(2016)
International Journal of Applied Earth Observations & Geoinformation
, vol.49
, pp. 87-98
-
-
Li, M.1
Ma, L.2
Blaschke, T.3
Cheng, L.4
Tiede, D.5
-
29
-
-
85061017806
-
A Random Forest and Superpixels Approach to Sharpen Thermal Infrared Satellite Imagery
-
Lillo-Saavedra, M. F., C., Gonzalo-Martín, A., García-Pedrero, and D., Rodriguéz-Esparragón. 2017. “A Random Forest and Superpixels Approach to Sharpen Thermal Infrared Satellite Imagery.” Paper presented at the Remote Sensing for Agriculture, Ecosystems, and Hydrology, Warszawa, Poland, September,11–14
-
(2017)
Paper presented at the Remote Sensing for Agriculture, Ecosystems, and Hydrology, Warszawa, Poland, September,11–14
-
-
Lillo-Saavedra, M.F.1
Gonzalo-Martín, C.2
García-Pedrero, A.3
Rodriguéz-Esparragón, D.4
-
30
-
-
84891015034
-
Adaptive Algorithm for Automated Polygonal Approximation of High Spatial Resolution Remote Sensing Imagery Segmentation Contours
-
Liu, J., J., Zhang, F., Xu, Z., Huang, and Y., Li. 2013. “Adaptive Algorithm for Automated Polygonal Approximation of High Spatial Resolution Remote Sensing Imagery Segmentation Contours.” IEEE Transactions on Geoscience & Remote Sensing 52 (2): 1099–1106. doi:10.1109/TGRS.2013.2247407
-
(2013)
IEEE Transactions on Geoscience & Remote Sensing
, vol.52
, Issue.2
, pp. 1099-1106
-
-
Liu, J.1
Zhang, J.2
Xu, F.3
Huang, Z.4
Li, Y.5
-
31
-
-
85038216873
-
Scale Computation on High Spatial Resolution Remotely Sensed Imagery Multi-Scale Segmentation
-
Liu, J., M., Du, and Z., Mao. 2017. “Scale Computation on High Spatial Resolution Remotely Sensed Imagery Multi-Scale Segmentation.” International Journal of Remote Sensing 38 (18): 5186–5214
-
(2017)
International Journal of Remote Sensing
, vol.38
, Issue.18
, pp. 5186-5214
-
-
Liu, J.1
Du, M.2
Mao, Z.3
-
32
-
-
85021219961
-
A Review of Supervised Object-Based Land-Cover Image Classification
-
Ma, L., M., Li, X., Ma, L., Cheng, P., Du, and Y., Liu. 2017b. “A Review of Supervised Object-Based Land-Cover Image Classification.” Isprs Journal of Photogrammetry & Remote Sensing 130: 277–293. doi:10.1016/j.isprsjprs.2017.06.001
-
(2017)
Isprs Journal of Photogrammetry & Remote Sensing
, vol.130
, pp. 277-293
-
-
Ma, L.1
Li, M.2
Ma, X.3
Cheng, L.4
Du, P.5
Liu, Y.6
-
33
-
-
85014908663
-
Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
-
Ma, L., T., Fu, T., Blaschke, M., Li, D., Tiede, Z., Zhou, X., Ma, and D., Chen. 2017a. “Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers.” ISPRS International Journal of Geo-Information 6 (2): 51. doi:10.3390/ijgi6020051
-
(2017)
ISPRS International Journal of Geo-Information
, vol.6
, Issue.2
, pp. 51
-
-
Ma, L.1
Fu, T.2
Blaschke, T.3
Li, M.4
Tiede, D.5
Zhou, Z.6
Ma, X.7
Chen, D.8
-
34
-
-
0345414167
-
Learning a Classification Model for Segmentation
-
1
-
Malik, J., 2003. “Learning a Classification Model for Segmentation.” Proceedings Iccv 1 1: 10–17
-
(2003)
Proceedings Iccv
, vol.1
, pp. 10-17
-
-
Malik, J.1
-
35
-
-
85048716904
-
Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review
-
Maxwell, A. E., T. A., Warner, and F., Fang. 2018. “Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review.” International Journal of Remote Sensing 39 (9): 2784–2817. doi:10.1080/01431161.2018.1433343
-
(2018)
International Journal of Remote Sensing
, vol.39
, Issue.9
, pp. 2784-2817
-
-
Maxwell, A.E.1
Warner, T.A.2
Fang, F.3
-
36
-
-
84929448899
-
Scale Parameter Selection by Spatial Statistics for GeOBIA: Using Mean-Shift Based Multi-Scale Segmentation as an Example
-
Ming, D., J., Li, J., Wang, and M., Zhang. 2015. “Scale Parameter Selection by Spatial Statistics for GeOBIA: Using Mean-Shift Based Multi-Scale Segmentation as an Example.” Isprs Journal of Photogrammetry & Remote Sensing 106: 28–41. doi:10.1016/j.isprsjprs.2015.04.010
-
(2015)
Isprs Journal of Photogrammetry & Remote Sensing
, vol.106
, pp. 28-41
-
-
Ming, D.1
Li, J.2
Wang, J.3
Zhang, M.4
-
37
-
-
84980316496
-
Applying Spatial Statistics into Remote Sensing Pattern Recognition: WithCase Study of Cropland Extraction Based on GeOBIA
-
Ming, D., Y., Qiu, and Z., Wen. 2016. “Applying Spatial Statistics into Remote Sensing Pattern Recognition: WithCase Study of Cropland Extraction Based on GeOBIA.” Acta Geodaetica Et Cartographica Sinica 45 (7): 825–833
-
(2016)
Acta Geodaetica Et Cartographica Sinica
, vol.45
, Issue.7
, pp. 825-833
-
-
Ming, D.1
Qiu, Y.2
Wen, Z.3
-
38
-
-
84884974860
-
Bayesian Framework for Mapping and Classifying Shallow Landslides Exploiting Remote Sensing and Topographic Data
-
Mondini, A. C., I., Marchesini, M., Rossi, K. T., Chang, G., Pasquariello, and F., Guzzetti. 2013. “Bayesian Framework for Mapping and Classifying Shallow Landslides Exploiting Remote Sensing and Topographic Data.” Geomorphology 201 (3): 135–147. doi:10.1016/j.geomorph.2013.06.015
-
(2013)
Geomorphology
, vol.201
, Issue.3
, pp. 135-147
-
-
Mondini, A.C.1
Marchesini, I.2
Rossi, M.3
Chang, K.T.4
Pasquariello, G.5
Guzzetti, F.6
-
39
-
-
66549093468
-
Classification of High-Resolution Images Based on MRF Fusion and Multiscale Segmentation
-
IEEE International, Cape Town, South Africa, July 12–17
-
Moser, G., and S. B., Serpico. 2009. “Classification of High-Resolution Images Based on MRF Fusion and Multiscale Segmentation.” Paper presented at the Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, Cape Town, South Africa, July 12–17
-
(2009)
Paper presented at the Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008
-
-
Moser, G.1
Serpico, S.B.2
-
40
-
-
80955131974
-
Contextual High-Resolution Image Classification by Markovian Data Fusion, Adaptive Texture Extraction, and Multiscale Segmentation
-
Moser, G., and S. B., Serpico. 2011. “Contextual High-Resolution Image Classification by Markovian Data Fusion, Adaptive Texture Extraction, and Multiscale Segmentation.” Paper presented at the Geoscience and Remote Sensing Symposium, Vancouver, Canada, July 24–29
-
(2011)
Paper presented at the Geoscience and Remote Sensing Symposium, Vancouver, Canada, July 24–29
-
-
Moser, G.1
Serpico, S.B.2
-
41
-
-
0242323688
-
A Markov Random Field-Based Approach to Decision-Level Fusion for Remote Sensing Image Classification
-
Nishii, R., 2003. “A Markov Random Field-Based Approach to Decision-Level Fusion for Remote Sensing Image Classification.” Geoscience & Remote Sensing IEEE Transactions On 41 (10): 2316–2319. doi:10.1109/TGRS.2003.816648
-
(2003)
Geoscience & Remote Sensing IEEE Transactions On
, vol.41
, Issue.10
, pp. 2316-2319
-
-
Nishii, R.1
-
42
-
-
33751564661
-
Bayesian Multi‐Net Classifier for Classification of Remote Sensing Data
-
Ouyang, Y., J., Ma, and Q., Dai. 2006. “Bayesian Multi‐Net Classifier for Classification of Remote Sensing Data.” International Journal of Remote Sensing 27 (21): 4943–4961. doi:10.1080/01431160600794605
-
(2006)
International Journal of Remote Sensing
, vol.27
, Issue.21
, pp. 4943-4961
-
-
Ouyang, Y.1
Ma, J.2
Dai, Q.3
-
44
-
-
84860909030
-
Local SVM Approaches for Fast and Accurate Classification of Remote-Sensing Images
-
Segata, N., E., Pasolli, F., Melgani, and E., Blanzieri. 2012. “Local SVM Approaches for Fast and Accurate Classification of Remote-Sensing Images.” International Journal of Remote Sensing 33 (19): 6186–6201. doi:10.1080/01431161.2012.678947
-
(2012)
International Journal of Remote Sensing
, vol.33
, Issue.19
, pp. 6186-6201
-
-
Segata, N.1
Pasolli, E.2
Melgani, F.3
Blanzieri, E.4
-
45
-
-
85027998504
-
A Patch-Based Convolutional Neural Network for Remote Sensing Image Classification
-
Sharma, A., X., Liu, X., Yang, and D., Shi. 2017. “A Patch-Based Convolutional Neural Network for Remote Sensing Image Classification.” Neural Networks the Official Journal of the International Neural Network Society 95: 19. doi:10.1016/j.neunet.2017.07.017
-
(2017)
Neural Networks the Official Journal of the International Neural Network Society
, vol.95
, pp. 19
-
-
Sharma, A.1
Liu, X.2
Yang, X.3
Shi, D.4
-
46
-
-
84953340965
-
A Study of A Gaussian Mixture Model for Urban Land-Cover Mapping Based on VHR Remote Sensing Imagery
-
Tao, J., N., Shu, Y., Wang, Q., Hu, and Y., Zhang. 2016. “A Study of A Gaussian Mixture Model for Urban Land-Cover Mapping Based on VHR Remote Sensing Imagery.” International Journal of Remote Sensing 37 (1): 1–13. doi:10.1080/2150704X.2015.1101502
-
(2016)
International Journal of Remote Sensing
, vol.37
, Issue.1
, pp. 1-13
-
-
Tao, J.1
Shu, N.2
Wang, Y.3
Hu, Q.4
Zhang, Y.5
-
47
-
-
84950124318
-
Superpixel-Based Roughness Measure for Multispectral Satellite Image Segmentation
-
Toro, C., C., Martín, Á., Pedrero, and E., Ruiz. 2015. “Superpixel-Based Roughness Measure for Multispectral Satellite Image Segmentation.” Remote Sensing 7 (11): 14620–14645. doi:10.3390/rs71114620
-
(2015)
Remote Sensing
, vol.7
, Issue.11
, pp. 14620-14645
-
-
Toro, C.1
Martín, C.2
Pedrero, Á.3
Ruiz, E.4
-
48
-
-
85053557892
-
-
Toro, C. A. O., C. G., Martín, A. G., Pedrero, A. R., Gonzalez, and E., Menasalvas. 2017. “Mitosis Detection in Breast Cancer Using Superpixels and Ensemble Classifiers.”
-
(2017)
Mitosis Detection in Breast Cancer Using Superpixels and Ensemble Classifiers
-
-
Toro, C.A.O.1
Martín, C.G.2
Pedrero, A.G.3
Gonzalez, A.R.4
Menasalvas, E.5
-
49
-
-
80053574908
-
Multiple Hypothesis Video Segmentation from Superpixel Flows
-
VazquezReina, A., S., Avidan, H., Pfister, and E., Miller. 2010. “Multiple Hypothesis Video Segmentation from Superpixel Flows.” Paper presented at the European Conference on Computer Vision, Crete, Greece, September 5–11
-
(2010)
Paper presented at the European Conference on Computer Vision, Crete, Greece, September 5–11
-
-
VazquezReina, A.1
Avidan, S.2
Pfister, H.3
Miller, E.4
-
50
-
-
85018251516
-
Superpixel Segmentation: A Benchmark
-
Wang, M., X., Liu, Y., Gao, X., Ma, and N. Q., Soomro. 2017. “Superpixel Segmentation: A Benchmark.” Signal Processing Image Communication 56: 28–39. doi:10.1016/j.image.2017.04.007
-
(2017)
Signal Processing Image Communication
, vol.56
, pp. 28-39
-
-
Wang, M.1
Liu, X.2
Gao, Y.3
Ma, X.4
Soomro, N.Q.5
-
51
-
-
84923357893
-
Assessing Machine-Learning Algorithms and Image- and Lidar-Derived Variables for GEOBIA Classification of Mining and Mine Reclamation
-
Warner, T. A., 2015. “Assessing Machine-Learning Algorithms and Image- and Lidar-Derived Variables for GEOBIA Classification of Mining and Mine Reclamation.” International Journal of Remote Sensing 36 (4): 954–978. doi:10.1080/01431161.2014.1001086
-
(2015)
International Journal of Remote Sensing
, vol.36
, Issue.4
, pp. 954-978
-
-
Warner, T.A.1
-
52
-
-
85007270701
-
Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping
-
Xie, M., N., Jean, M., Burke, D., Lobell, and S., Ermon. 2016. “Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping.” Paper presented at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona USA, February 12–17
-
(2016)
Paper presented at the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona USA, February 12–17
-
-
Xie, M.1
Jean, N.2
Burke, M.3
Lobell, D.4
Ermon, S.5
-
53
-
-
85025599192
-
-
International Journal of Remote Sensing 38 (22): 6386–6406, and,. Sub-pixel vs. Super-Pixel-Based Greenspace Mapping Along the urban–Rural Gradient Using High Spatial Resolution Gaofen-2 Satellite Imagery: A Case Study of Haidian
-
Yin, W., and J., Yang. 2017. “Sub-pixel vs. Super-Pixel-Based Greenspace Mapping Along the urban–Rural Gradient Using High Spatial Resolution Gaofen-2 Satellite Imagery: A Case Study of Haidian District, Beijing, China. ” International Journal of Remote Sensing 38 (22): 6386–6406. doi:10.1080/01431161.2017.1354266
-
(2017)
District, Beijing, China
-
-
Yin, W.1
Yang, J.2
-
54
-
-
85047492233
-
Feature Extraction and Image Retrieval Based on AlexNet
-
Yuan, Z. W., and J., Zhang. 2016. “Feature Extraction and Image Retrieval Based on AlexNet.” Paper presented at the Eighth International Conference on Digital Image Processing, Chengdu, China, May 20–22
-
(2016)
Paper presented at the Eighth International Conference on Digital Image Processing, Chengdu, China, May 20–22
-
-
Yuan, Z.W.1
Zhang, J.2
-
55
-
-
85018640168
-
Superpixel-Based Multiple Local CNN for Panchromatic and Multispectral Image Classification
-
Zhao, W., L., Jiao, W., Ma, J., Zhao, J., Zhao, H., Liu, X., Cao, and S., Yang. 2017. “Superpixel-Based Multiple Local CNN for Panchromatic and Multispectral Image Classification.” IEEE Transactions on Geoscience & Remote Sensing 55 (7): 4141–4156. doi:10.1109/TGRS.2017.2689018
-
(2017)
IEEE Transactions on Geoscience & Remote Sensing
, vol.55
, Issue.7
, pp. 4141-4156
-
-
Zhao, W.1
Jiao, L.2
Ma, W.3
Zhao, J.4
Zhao, J.5
Liu, H.6
Cao, X.7
Yang, S.8
-
56
-
-
84956620231
-
Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery
-
Zhao, W., and S., Du. 2016a. “Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery.” Isprs Journal of Photogrammetry & Remote Sensing 113: 155–165. doi:10.1016/j.isprsjprs.2016.01.004
-
(2016)
Isprs Journal of Photogrammetry & Remote Sensing
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
57
-
-
84979619476
-
Scene Classification Using Multi-Scale Deeply Described Visual Words
-
Zhao, W., and S., Du. 2016b. “Scene Classification Using Multi-Scale Deeply Described Visual Words.” International Journal of Remote Sensing 37 (17): 4119–4131. doi:10.1080/01431161.2016.1207266
-
(2016)
International Journal of Remote Sensing
, vol.37
, Issue.17
, pp. 4119-4131
-
-
Zhao, W.1
Du, S.2
-
58
-
-
84979492674
-
Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
-
Zhao, W., and S., Du. 2016c. “Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach.” IEEE Transactions on Geoscience & Remote Sensing 54 (8): 4544–4554. doi:10.1109/TGRS.2016.2543748
-
(2016)
IEEE Transactions on Geoscience & Remote Sensing
, vol.54
, Issue.8
, pp. 4544-4554
-
-
Zhao, W.1
Du, S.2
-
59
-
-
84937137588
-
On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery
-
Zhao, W., Z., Guo, J., Yue, L., Luo, and L., Luo. 2015. “On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery.” International Journal of Remote Sensing 36 (13): 3368–3379. doi:10.1080/2150704X.2015.1062157
-
(2015)
International Journal of Remote Sensing
, vol.36
, Issue.13
, pp. 3368-3379
-
-
Zhao, W.1
Guo, Z.2
Yue, J.3
Luo, L.4
Luo, L.5
-
60
-
-
84978419156
-
SVM-based Soft Classification of Urban Tree Species Using Very High-Spatial Resolution Remote-Sensing Imagery
-
Zhou, J., J., Qin, K., Gao, and H., Leng. 2016. “SVM-based Soft Classification of Urban Tree Species Using Very High-Spatial Resolution Remote-Sensing Imagery.” International Journal of Remote Sensing 37 (11): 2541–2559. doi:10.1080/01431161.2016.1178867
-
(2016)
International Journal of Remote Sensing
, vol.37
, Issue.11
, pp. 2541-2559
-
-
Zhou, J.1
Qin, J.2
Gao, K.3
Leng, H.4
-
61
-
-
85053559644
-
-
Zohourian, F.;., B., Antic, J., Siegemund, M., Meuter, and J., Pauli. 2018. “Superpixel-based Road Segmentation for Real-time Systems using CNN.”
-
(2018)
Superpixel-based Road Segmentation for Real-time Systems using CNN
-
-
Zohourian, F.1
Antic, B.2
Siegemund, J.3
Meuter, M.4
Pauli, J.5
|