메뉴 건너뛰기




Volumn 40, Issue 2, 2019, Pages 506-531

Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; DEEP LEARNING; IMAGE ANALYSIS; IMAGE CLASSIFICATION; IMAGE SEGMENTATION; NEURAL NETWORKS; PIXELS; REMOTE SENSING; SUPERPIXELS;

EID: 85053519750     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2018.1513666     Document Type: Article
Times cited : (107)

References (61)
  • 3
    • 84862886508 scopus 로고    scopus 로고
    • Introduction to the GEOBIA 2010 Special Issue: From Pixels to Geographic Objects in Remote Sensing Image Analysis
    • Addink, E. A., F. M. B., Van Coillie, and S. M., De Jong. 2012. “Introduction to the GEOBIA 2010 Special Issue: From Pixels to Geographic Objects in Remote Sensing Image Analysis.” International Journal of Applied Earth Observation & Geoinformation 15 (1): 1–6. doi:10.1016/j.jag.2011.12.001
    • (2012) International Journal of Applied Earth Observation & Geoinformation , vol.15 , Issue.1 , pp. 1-6
    • Addink, E.A.1    Van Coillie, F.M.B.2    De Jong, S.M.3
  • 8
    • 85021764029 scopus 로고    scopus 로고
    • Linear Spectral Clustering Superpixel
    • Chen, J., Z., Li, and B., Huang. 2017. “Linear Spectral Clustering Superpixel.” IEEE Trans Image Process PP, no. 99: 3317–3330. doi:10.1109/TIP.2017.2651389
    • (2017) IEEE Trans Image Process PP , Issue.99 , pp. 3317-3330
    • Chen, J.1    Li, Z.2    Huang, B.3
  • 10
    • 84892987748 scopus 로고    scopus 로고
    • Automatic Identification of Agricultural Terraces through Object-Oriented Analysis of Very High Resolution DSMs and Multispectral Imagery Obtained from an Unmanned Aerial Vehicle
    • Diazvarela, R. A., P. J., Zarcotejada, V., Angileri, and P., Loudjani. 2014. “Automatic Identification of Agricultural Terraces through Object-Oriented Analysis of Very High Resolution DSMs and Multispectral Imagery Obtained from an Unmanned Aerial Vehicle.” Journal of Environmental Management 134 (4): 117–126. doi:10.1016/j.jenvman.2014.01.006
    • (2014) Journal of Environmental Management , vol.134 , Issue.4 , pp. 117-126
    • Diazvarela, R.A.1    Zarcotejada, P.J.2    Angileri, V.3    Loudjani, P.4
  • 14
    • 84878142093 scopus 로고    scopus 로고
    • Objects Multiscale Characterization: A Tool for High Spatial Resolution Image Classification
    • Gonzalo-Martín, C., and M., Lillo-Saavedra. 2012. “Objects Multiscale Characterization: A Tool for High Spatial Resolution Image Classification.” Revista De Teledeteccion, no. 38: 19–27
    • (2012) Revista De Teledeteccion , Issue.38 , pp. 19-27
    • Gonzalo-Martín, C.1    Lillo-Saavedra, M.2
  • 17
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the Dimensionality of Data with Neural Networks
    • Hinton, G. E., and R. R., Salakhutdinov. 2006. “Reducing the Dimensionality of Data with Neural Networks.” Science 313 (5786): 504–507. doi:10.1126/science.1127647
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 18
    • 85034410882 scopus 로고    scopus 로고
    • Fractional Cover Mapping of Spruce and Pine at 1 Ha Resolution Combining Very High and Medium Spatial Resolution Satellite Imagery
    • Immitzer, M., S., Böck, K., Einzmann, F., Vuolo, N., Pinnel, A., Wallner, and C., Atzberger. 2017. “Fractional Cover Mapping of Spruce and Pine at 1 Ha Resolution Combining Very High and Medium Spatial Resolution Satellite Imagery.” Remote Sensing of Environment 204: 690–703
    • (2017) Remote Sensing of Environment , vol.204-703
    • Immitzer, M.1    Böck, S.2    Einzmann, K.3    Vuolo, F.4    Pinnel, N.5    Wallner, A.6    Atzberger, C.7
  • 19
    • 85040698389 scopus 로고    scopus 로고
    • Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through Meta-Analysis and Regression Tree Modeling
    • Johnson, B., and S., Jozdani. 2018. “Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through Meta-Analysis and Regression Tree Modeling.” Remote Sensing 10 (1): 73. doi:10.3390/rs10010073
    • (2018) Remote Sensing , vol.10 , Issue.1
    • Johnson, B.1    Jozdani, S.2
  • 20
    • 84869054245 scopus 로고    scopus 로고
    • High-Resolution Urban Land-Cover Classification Using a Competitive Multi-Scale Object-Based Approach
    • Johnson, B. A., 2013. “High-Resolution Urban Land-Cover Classification Using a Competitive Multi-Scale Object-Based Approach.” Remote Sensing Letters 4 (2): 131–140. doi:10.1080/2150704X.2012.705440
    • (2013) Remote Sensing Letters , vol.4 , Issue.2 , pp. 131-140
    • Johnson, B.A.1
  • 21
    • 85040694926 scopus 로고    scopus 로고
    • A Regression Modelling Approach for Optimizing Segmentation Scale Parameters to Extract Buildings of Different Sizes
    • Jozdani, S. E., M., Momeni, B. A., Johnson, and M., Sattari. 2018. “A Regression Modelling Approach for Optimizing Segmentation Scale Parameters to Extract Buildings of Different Sizes.” International Journal of Remote Sensing 39 (3): 684–703. doi:10.1080/01431161.2017.1390273
    • (2018) International Journal of Remote Sensing , vol.39 , Issue.3 , pp. 684-703
    • Jozdani, S.E.1    Momeni, M.2    Johnson, B.A.3    Sattari, M.4
  • 22
    • 79957608758 scopus 로고    scopus 로고
    • Multi-Scale GEOBIA with Very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects
    • Kim, M., T. A., Warner, M., Madden, and D. S., Atkinson. 2011. “Multi-Scale GEOBIA with Very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects.” International Journal of Remote Sensing 32 (10): 2825–2850. doi:10.1080/01431161003745608
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.10 , pp. 2825-2850
    • Kim, M.1    Warner, T.A.2    Madden, M.3    Atkinson, D.S.4
  • 23
    • 80052965804 scopus 로고    scopus 로고
    • Extraction of Complex Patterns from Multiresolution Remote Sensing Images: A Hierarchical Top-Down Methodology
    • Kurtz, C., N., Passat, P., Gançarski, and A., Puissant. 2018. “Extraction of Complex Patterns from Multiresolution Remote Sensing Images: A Hierarchical Top-Down Methodology.” Pattern Recognition 45 (2): 685–706. doi:10.1016/j.patcog.2011.07.017
    • (2018) Pattern Recognition , vol.45 , Issue.2 , pp. 685-706
    • Kurtz, C.1    Passat, N.2    Gançarski, P.3    Puissant, A.4
  • 24
    • 84864510265 scopus 로고    scopus 로고
    • A Comparison of Three Feature Selection Methods for Object-Based Classification of Sub-Decimeter Resolution UltraCam-L Imagery
    • Laliberte, A. S., D. M., Browning, and A., Rango. 2012. “A Comparison of Three Feature Selection Methods for Object-Based Classification of Sub-Decimeter Resolution UltraCam-L Imagery.” International Journal of Applied Earth Observation & Geoinformation 15 (4): 70–78. doi:10.1016/j.jag.2011.05.011
    • (2012) International Journal of Applied Earth Observation & Geoinformation , vol.15 , Issue.4 , pp. 70-78
    • Laliberte, A.S.1    Browning, D.M.2    Rango, A.3
  • 25
  • 26
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • Lecun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521 (7553): 436. doi:10.1038/nature14539
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 27
    • 85017406334 scopus 로고    scopus 로고
    • A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments
    • Li, M., L., Ma, T., Blaschke, L., Cheng, and D., Tiede. 2016. “A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments.” International Journal of Applied Earth Observations & Geoinformation 49: 87–98. doi:10.1016/j.jag.2016.01.011
    • (2016) International Journal of Applied Earth Observations & Geoinformation , vol.49 , pp. 87-98
    • Li, M.1    Ma, L.2    Blaschke, T.3    Cheng, L.4    Tiede, D.5
  • 30
    • 84891015034 scopus 로고    scopus 로고
    • Adaptive Algorithm for Automated Polygonal Approximation of High Spatial Resolution Remote Sensing Imagery Segmentation Contours
    • Liu, J., J., Zhang, F., Xu, Z., Huang, and Y., Li. 2013. “Adaptive Algorithm for Automated Polygonal Approximation of High Spatial Resolution Remote Sensing Imagery Segmentation Contours.” IEEE Transactions on Geoscience & Remote Sensing 52 (2): 1099–1106. doi:10.1109/TGRS.2013.2247407
    • (2013) IEEE Transactions on Geoscience & Remote Sensing , vol.52 , Issue.2 , pp. 1099-1106
    • Liu, J.1    Zhang, J.2    Xu, F.3    Huang, Z.4    Li, Y.5
  • 31
    • 85038216873 scopus 로고    scopus 로고
    • Scale Computation on High Spatial Resolution Remotely Sensed Imagery Multi-Scale Segmentation
    • Liu, J., M., Du, and Z., Mao. 2017. “Scale Computation on High Spatial Resolution Remotely Sensed Imagery Multi-Scale Segmentation.” International Journal of Remote Sensing 38 (18): 5186–5214
    • (2017) International Journal of Remote Sensing , vol.38 , Issue.18 , pp. 5186-5214
    • Liu, J.1    Du, M.2    Mao, Z.3
  • 32
    • 85021219961 scopus 로고    scopus 로고
    • A Review of Supervised Object-Based Land-Cover Image Classification
    • Ma, L., M., Li, X., Ma, L., Cheng, P., Du, and Y., Liu. 2017b. “A Review of Supervised Object-Based Land-Cover Image Classification.” Isprs Journal of Photogrammetry & Remote Sensing 130: 277–293. doi:10.1016/j.isprsjprs.2017.06.001
    • (2017) Isprs Journal of Photogrammetry & Remote Sensing , vol.130 , pp. 277-293
    • Ma, L.1    Li, M.2    Ma, X.3    Cheng, L.4    Du, P.5    Liu, Y.6
  • 33
    • 85014908663 scopus 로고    scopus 로고
    • Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
    • Ma, L., T., Fu, T., Blaschke, M., Li, D., Tiede, Z., Zhou, X., Ma, and D., Chen. 2017a. “Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers.” ISPRS International Journal of Geo-Information 6 (2): 51. doi:10.3390/ijgi6020051
    • (2017) ISPRS International Journal of Geo-Information , vol.6 , Issue.2 , pp. 51
    • Ma, L.1    Fu, T.2    Blaschke, T.3    Li, M.4    Tiede, D.5    Zhou, Z.6    Ma, X.7    Chen, D.8
  • 34
    • 0345414167 scopus 로고    scopus 로고
    • Learning a Classification Model for Segmentation
    • 1
    • Malik, J., 2003. “Learning a Classification Model for Segmentation.” Proceedings Iccv 1 1: 10–17
    • (2003) Proceedings Iccv , vol.1 , pp. 10-17
    • Malik, J.1
  • 35
    • 85048716904 scopus 로고    scopus 로고
    • Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review
    • Maxwell, A. E., T. A., Warner, and F., Fang. 2018. “Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review.” International Journal of Remote Sensing 39 (9): 2784–2817. doi:10.1080/01431161.2018.1433343
    • (2018) International Journal of Remote Sensing , vol.39 , Issue.9 , pp. 2784-2817
    • Maxwell, A.E.1    Warner, T.A.2    Fang, F.3
  • 36
    • 84929448899 scopus 로고    scopus 로고
    • Scale Parameter Selection by Spatial Statistics for GeOBIA: Using Mean-Shift Based Multi-Scale Segmentation as an Example
    • Ming, D., J., Li, J., Wang, and M., Zhang. 2015. “Scale Parameter Selection by Spatial Statistics for GeOBIA: Using Mean-Shift Based Multi-Scale Segmentation as an Example.” Isprs Journal of Photogrammetry & Remote Sensing 106: 28–41. doi:10.1016/j.isprsjprs.2015.04.010
    • (2015) Isprs Journal of Photogrammetry & Remote Sensing , vol.106 , pp. 28-41
    • Ming, D.1    Li, J.2    Wang, J.3    Zhang, M.4
  • 37
    • 84980316496 scopus 로고    scopus 로고
    • Applying Spatial Statistics into Remote Sensing Pattern Recognition: WithCase Study of Cropland Extraction Based on GeOBIA
    • Ming, D., Y., Qiu, and Z., Wen. 2016. “Applying Spatial Statistics into Remote Sensing Pattern Recognition: WithCase Study of Cropland Extraction Based on GeOBIA.” Acta Geodaetica Et Cartographica Sinica 45 (7): 825–833
    • (2016) Acta Geodaetica Et Cartographica Sinica , vol.45 , Issue.7 , pp. 825-833
    • Ming, D.1    Qiu, Y.2    Wen, Z.3
  • 38
    • 84884974860 scopus 로고    scopus 로고
    • Bayesian Framework for Mapping and Classifying Shallow Landslides Exploiting Remote Sensing and Topographic Data
    • Mondini, A. C., I., Marchesini, M., Rossi, K. T., Chang, G., Pasquariello, and F., Guzzetti. 2013. “Bayesian Framework for Mapping and Classifying Shallow Landslides Exploiting Remote Sensing and Topographic Data.” Geomorphology 201 (3): 135–147. doi:10.1016/j.geomorph.2013.06.015
    • (2013) Geomorphology , vol.201 , Issue.3 , pp. 135-147
    • Mondini, A.C.1    Marchesini, I.2    Rossi, M.3    Chang, K.T.4    Pasquariello, G.5    Guzzetti, F.6
  • 39
    • 66549093468 scopus 로고    scopus 로고
    • Classification of High-Resolution Images Based on MRF Fusion and Multiscale Segmentation
    • IEEE International, Cape Town, South Africa, July 12–17
    • Moser, G., and S. B., Serpico. 2009. “Classification of High-Resolution Images Based on MRF Fusion and Multiscale Segmentation.” Paper presented at the Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, Cape Town, South Africa, July 12–17
    • (2009) Paper presented at the Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008
    • Moser, G.1    Serpico, S.B.2
  • 41
    • 0242323688 scopus 로고    scopus 로고
    • A Markov Random Field-Based Approach to Decision-Level Fusion for Remote Sensing Image Classification
    • Nishii, R., 2003. “A Markov Random Field-Based Approach to Decision-Level Fusion for Remote Sensing Image Classification.” Geoscience & Remote Sensing IEEE Transactions On 41 (10): 2316–2319. doi:10.1109/TGRS.2003.816648
    • (2003) Geoscience & Remote Sensing IEEE Transactions On , vol.41 , Issue.10 , pp. 2316-2319
    • Nishii, R.1
  • 42
    • 33751564661 scopus 로고    scopus 로고
    • Bayesian Multi‐Net Classifier for Classification of Remote Sensing Data
    • Ouyang, Y., J., Ma, and Q., Dai. 2006. “Bayesian Multi‐Net Classifier for Classification of Remote Sensing Data.” International Journal of Remote Sensing 27 (21): 4943–4961. doi:10.1080/01431160600794605
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.21 , pp. 4943-4961
    • Ouyang, Y.1    Ma, J.2    Dai, Q.3
  • 44
    • 84860909030 scopus 로고    scopus 로고
    • Local SVM Approaches for Fast and Accurate Classification of Remote-Sensing Images
    • Segata, N., E., Pasolli, F., Melgani, and E., Blanzieri. 2012. “Local SVM Approaches for Fast and Accurate Classification of Remote-Sensing Images.” International Journal of Remote Sensing 33 (19): 6186–6201. doi:10.1080/01431161.2012.678947
    • (2012) International Journal of Remote Sensing , vol.33 , Issue.19 , pp. 6186-6201
    • Segata, N.1    Pasolli, E.2    Melgani, F.3    Blanzieri, E.4
  • 46
    • 84953340965 scopus 로고    scopus 로고
    • A Study of A Gaussian Mixture Model for Urban Land-Cover Mapping Based on VHR Remote Sensing Imagery
    • Tao, J., N., Shu, Y., Wang, Q., Hu, and Y., Zhang. 2016. “A Study of A Gaussian Mixture Model for Urban Land-Cover Mapping Based on VHR Remote Sensing Imagery.” International Journal of Remote Sensing 37 (1): 1–13. doi:10.1080/2150704X.2015.1101502
    • (2016) International Journal of Remote Sensing , vol.37 , Issue.1 , pp. 1-13
    • Tao, J.1    Shu, N.2    Wang, Y.3    Hu, Q.4    Zhang, Y.5
  • 47
    • 84950124318 scopus 로고    scopus 로고
    • Superpixel-Based Roughness Measure for Multispectral Satellite Image Segmentation
    • Toro, C., C., Martín, Á., Pedrero, and E., Ruiz. 2015. “Superpixel-Based Roughness Measure for Multispectral Satellite Image Segmentation.” Remote Sensing 7 (11): 14620–14645. doi:10.3390/rs71114620
    • (2015) Remote Sensing , vol.7 , Issue.11 , pp. 14620-14645
    • Toro, C.1    Martín, C.2    Pedrero, Á.3    Ruiz, E.4
  • 51
    • 84923357893 scopus 로고    scopus 로고
    • Assessing Machine-Learning Algorithms and Image- and Lidar-Derived Variables for GEOBIA Classification of Mining and Mine Reclamation
    • Warner, T. A., 2015. “Assessing Machine-Learning Algorithms and Image- and Lidar-Derived Variables for GEOBIA Classification of Mining and Mine Reclamation.” International Journal of Remote Sensing 36 (4): 954–978. doi:10.1080/01431161.2014.1001086
    • (2015) International Journal of Remote Sensing , vol.36 , Issue.4 , pp. 954-978
    • Warner, T.A.1
  • 53
    • 85025599192 scopus 로고    scopus 로고
    • International Journal of Remote Sensing 38 (22): 6386–6406, and,. Sub-pixel vs. Super-Pixel-Based Greenspace Mapping Along the urban–Rural Gradient Using High Spatial Resolution Gaofen-2 Satellite Imagery: A Case Study of Haidian
    • Yin, W., and J., Yang. 2017. “Sub-pixel vs. Super-Pixel-Based Greenspace Mapping Along the urban–Rural Gradient Using High Spatial Resolution Gaofen-2 Satellite Imagery: A Case Study of Haidian District, Beijing, China. ” International Journal of Remote Sensing 38 (22): 6386–6406. doi:10.1080/01431161.2017.1354266
    • (2017) District, Beijing, China
    • Yin, W.1    Yang, J.2
  • 55
    • 85018640168 scopus 로고    scopus 로고
    • Superpixel-Based Multiple Local CNN for Panchromatic and Multispectral Image Classification
    • Zhao, W., L., Jiao, W., Ma, J., Zhao, J., Zhao, H., Liu, X., Cao, and S., Yang. 2017. “Superpixel-Based Multiple Local CNN for Panchromatic and Multispectral Image Classification.” IEEE Transactions on Geoscience & Remote Sensing 55 (7): 4141–4156. doi:10.1109/TGRS.2017.2689018
    • (2017) IEEE Transactions on Geoscience & Remote Sensing , vol.55 , Issue.7 , pp. 4141-4156
    • Zhao, W.1    Jiao, L.2    Ma, W.3    Zhao, J.4    Zhao, J.5    Liu, H.6    Cao, X.7    Yang, S.8
  • 56
    • 84956620231 scopus 로고    scopus 로고
    • Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery
    • Zhao, W., and S., Du. 2016a. “Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery.” Isprs Journal of Photogrammetry & Remote Sensing 113: 155–165. doi:10.1016/j.isprsjprs.2016.01.004
    • (2016) Isprs Journal of Photogrammetry & Remote Sensing , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 57
    • 84979619476 scopus 로고    scopus 로고
    • Scene Classification Using Multi-Scale Deeply Described Visual Words
    • Zhao, W., and S., Du. 2016b. “Scene Classification Using Multi-Scale Deeply Described Visual Words.” International Journal of Remote Sensing 37 (17): 4119–4131. doi:10.1080/01431161.2016.1207266
    • (2016) International Journal of Remote Sensing , vol.37 , Issue.17 , pp. 4119-4131
    • Zhao, W.1    Du, S.2
  • 58
    • 84979492674 scopus 로고    scopus 로고
    • Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
    • Zhao, W., and S., Du. 2016c. “Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach.” IEEE Transactions on Geoscience & Remote Sensing 54 (8): 4544–4554. doi:10.1109/TGRS.2016.2543748
    • (2016) IEEE Transactions on Geoscience & Remote Sensing , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 59
    • 84937137588 scopus 로고    scopus 로고
    • On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery
    • Zhao, W., Z., Guo, J., Yue, L., Luo, and L., Luo. 2015. “On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery.” International Journal of Remote Sensing 36 (13): 3368–3379. doi:10.1080/2150704X.2015.1062157
    • (2015) International Journal of Remote Sensing , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Luo, L.4    Luo, L.5
  • 60
    • 84978419156 scopus 로고    scopus 로고
    • SVM-based Soft Classification of Urban Tree Species Using Very High-Spatial Resolution Remote-Sensing Imagery
    • Zhou, J., J., Qin, K., Gao, and H., Leng. 2016. “SVM-based Soft Classification of Urban Tree Species Using Very High-Spatial Resolution Remote-Sensing Imagery.” International Journal of Remote Sensing 37 (11): 2541–2559. doi:10.1080/01431161.2016.1178867
    • (2016) International Journal of Remote Sensing , vol.37 , Issue.11 , pp. 2541-2559
    • Zhou, J.1    Qin, J.2    Gao, K.3    Leng, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.