메뉴 건너뛰기




Volumn 10, Issue 7, 2017, Pages 3386-3396

Object-Based Convolutional Neural Network for High-Resolution Imagery Classification

Author keywords

Convolutional neural network (CNN); deep learning; high resolution image; image classification

Indexed keywords

BUILDINGS; COMPLEX NETWORKS; CONVOLUTION; DEEP LEARNING; IMAGE RECONSTRUCTION; LEARNING SYSTEMS; NEURAL NETWORKS; OFFICE BUILDINGS; REMOTE SENSING; SEMANTICS;

EID: 85017136781     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2017.2680324     Document Type: Article
Times cited : (206)

References (39)
  • 2
    • 33748331356 scopus 로고    scopus 로고
    • A multilevel context-based system for classification of very high spatial resolution images
    • Sep.
    • L. Bruzzone and L. Carlin, "A multilevel context-based system for classification of very high spatial resolution images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2587-2600, Sep. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.9 , pp. 2587-2600
    • Bruzzone, L.1    Carlin, L.2
  • 3
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Aug.
    • W. Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 4
    • 84973571837 scopus 로고    scopus 로고
    • Weakly supervised learning based on coupled convolutional neural networks for aircraft detection
    • Sep.
    • F. Zhang, B. Du, L. Zhang, and M. Xu, "Weakly supervised learning based on coupled convolutional neural networks for aircraft detection," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5553-5563, Sep. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.9 , pp. 5553-5563
    • Zhang, F.1    Du, B.2    Zhang, L.3    Xu, M.4
  • 5
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Y. Bengio, "Learning deep architectures for ai," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 1642487678 scopus 로고    scopus 로고
    • Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information
    • U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, "Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information," ISPRS J. Photogrammetry Remote Sens., vol. 58, no. 3, pp. 239-258, 2004.
    • (2004) ISPRS J. Photogrammetry Remote Sens. , vol.58 , Issue.3 , pp. 239-258
    • Benz, U.C.1    Hofmann, P.2    Willhauck, G.3    Lingenfelder, I.4    Heynen, M.5
  • 7
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Apr.
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 8
    • 84979619476 scopus 로고    scopus 로고
    • Scene classification using multi-scale deeply described visual words
    • [Online]
    • W. Zhao and S. Du, "Scene classification using multi-scale deeply described visual words," Int. J. Remote Sens., vol. 37, no. 17, pp. 4119-4131, 2016. [Online]. Available: http://dx.doi.org/10.1080/01431161.2016.1207266
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.17 , pp. 4119-4131
    • Zhao, W.1    Du, S.2
  • 9
    • 13444283842 scopus 로고    scopus 로고
    • The utility of texture analysis to improve perpixel classification for high to very high spatial resolution imagery
    • [Online]
    • A. Puissant, J. Hirsch, and C. Weber, "The utility of texture analysis to improve perpixel classification for high to very high spatial resolution imagery," Int. J. Remote Sens., vol. 26, no. 4, pp. 733-745, 2005. [Online]. Available: http://dx.doi.org/10.1080/01431160512331316838
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.4 , pp. 733-745
    • Puissant, A.1    Hirsch, J.2    Weber, C.3
  • 10
    • 84952815479 scopus 로고    scopus 로고
    • Road extraction in remote sensing images based on spectral and edge analysis
    • W. Zhao, L. Luo, Z. Guo, J. Yue, X. Yu, H. Liu, and J. Wei, "Road extraction in remote sensing images based on spectral and edge analysis," Spectrosc. Spectral Anal., vol. 35, no. 10, pp. 2814-2819, 2015.
    • (2015) Spectrosc. Spectral Anal. , vol.35 , Issue.10 , pp. 2814-2819
    • Zhao, W.1    Luo, L.2    Guo, Z.3    Yue, J.4    Yu, X.5    Liu, H.6    Wei, J.7
  • 11
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar.
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 12
    • 77956058584 scopus 로고    scopus 로고
    • Hyperspectral region classification using a three-dimensional gabor filterbank
    • Sep.
    • T. C. Bau, S. Sarkar, and G. Healey, "Hyperspectral region classification using a three-dimensional gabor filterbank," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 9, pp. 3457-3464, Sep. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.9 , pp. 3457-3464
    • Bau, T.C.1    Sarkar, S.2    Healey, G.3
  • 13
    • 52649118668 scopus 로고    scopus 로고
    • A multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform
    • [Online]
    • X. Huang, L. Zhang, and P. Li, "A multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform," Int. J. Remote Sens., vol. 29, no. 20, pp. 5923-5941, 2008. [Online]. Available: http://dx.doi.org/10.1080/01431160802139922
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.20 , pp. 5923-5941
    • Huang, X.1    Zhang, L.2    Li, P.3
  • 14
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Jan.
    • A. M. Cheriyadat, "Unsupervised feature learning for aerial scene classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439-451, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.M.1
  • 15
    • 84901820174 scopus 로고    scopus 로고
    • Automatic feature learning for spatio-spectral image classification with sparse SVM
    • Oct.
    • D. Tuia, M. Volpi, M. D. Mura, A. Rakotomamonjy, and R. Flamary, "Automatic feature learning for spatio-spectral image classification with sparse svm," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6062-6074, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6062-6074
    • Tuia, D.1    Volpi, M.2    Mura, M.D.3    Rakotomamonjy, A.4    Flamary, R.5
  • 16
    • 84907456238 scopus 로고    scopus 로고
    • Multiple feature learning for hyperspectral image classification
    • Mar.
    • J. Li et al., "Multiple feature learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592-1606, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1592-1606
    • Li, J.1
  • 17
    • 84929495655 scopus 로고    scopus 로고
    • Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions
    • D. Tuia, R. Flamary, and N. Courty, "Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions," J. Photogrammetry Remote Sens., vol. 105, pp. 272-285, 2015.
    • (2015) J. Photogrammetry Remote Sens. , vol.105 , pp. 272-285
    • Tuia, D.1    Flamary, R.2    Courty, N.3
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 19
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 20
    • 84890478042 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Q. V. Le, "Building high-level features using large scale unsupervised learning," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2013, pp. 8595-8598.
    • (2013) Proc. IEEE Int. Conf. Acoust. Speech Signal Process. , pp. 8595-8598
    • Le, Q.V.1
  • 23
    • 85162513516 scopus 로고    scopus 로고
    • Object bank:Ahigh-level image representation for scene classification & semantic feature sparsification
    • L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing, "Object bank:Ahigh-level image representation for scene classification & semantic feature sparsification," in Proc. Adv. Neural Inf. Process. Syst. Conf., 2010, pp. 1378-1386.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. Conf. , pp. 1378-1386
    • Li, L.-J.1    Su, H.2    Fei-Fei, L.3    Xing, E.P.4
  • 25
    • 84937137588 scopus 로고    scopus 로고
    • On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
    • [Online]
    • W. Zhao, Z. Guo, J. Yue, X. Zhang, and L. Luo, "On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery," Int. J. Remote Sens., vol. 36, no. 13, pp. 3368-3379, 2015. [Online]. Available: http://dx.doi.org/10.1080/2150704X.2015.1062157
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Zhang, X.4    Luo, L.5
  • 26
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Oct.
    • X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 27
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    • J. Yue, W. Zhao, S. Mao, and H. Liu, "Spectral-spatial classification of hyperspectral images using deep convolutional neural networks," Remote Sens. Lett., vol. 6, no. 6, pp. 468-477, 2015.
    • (2015) Remote Sens. Lett. , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 28
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery," ISPRS J. Photogrammetry Remote Sens., vol. 113, pp. 155-165, 2016.
    • (2016) ISPRS J. Photogrammetry Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 29
    • 0000082465 scopus 로고    scopus 로고
    • Object-oriented image processing in an integrated gis/remote sensing environment and perspectives for environmental applications
    • T. Blaschke, S. Lang, E. Lorup, J. Strobl, and P. Zeil, "Object-oriented image processing in an integrated gis/remote sensing environment and perspectives for environmental applications," Environ. Inf. Planning Politics Public, vol. 2, pp. 555-570, 2000.
    • (2000) Environ. Inf. Planning Politics Public , vol.2 , pp. 555-570
    • Blaschke, T.1    Lang, S.2    Lorup, E.3    Strobl, J.4    Zeil, P.5
  • 30
    • 41249094866 scopus 로고    scopus 로고
    • Deforestation in central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed landsat extracts
    • G. Duveiller, P. Defourny, B. Desclée, and P. Mayaux, "Deforestation in central africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed landsat extracts," Remote Sens. Environ., vol. 112, no. 5, pp. 1969-1981, 2008.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.5 , pp. 1969-1981
    • Duveiller, G.1    Defourny, P.2    Desclée, B.3    Mayaux, P.4
  • 31
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675-678.
    • (2014) Proc. ACM Int. Conf. Multimedia , pp. 675-678
    • Jia, Y.1
  • 32
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 36
    • 79958822032 scopus 로고    scopus 로고
    • The dgpf-test on digital airborne camera evaluation-overview and test design
    • M. Cramer, "The dgpf-test on digital airborne camera evaluation-overview and test design," Photogrammetrie Fernerkundung Geoinf., vol. 2010, no. 2, pp. 73-82, 2010.
    • (2010) Photogrammetrie Fernerkundung Geoinf. , vol.2010 , Issue.2 , pp. 73-82
    • Cramer, M.1
  • 37
    • 0442314452 scopus 로고    scopus 로고
    • High spatial resolution spectral mixture analysis of urban reflectance
    • C. Small, "High spatial resolution spectral mixture analysis of urban reflectance," Remote Sens. Environ., vol. 88, nos. 1/2, pp. 170-186, 2003.
    • (2003) Remote Sens. Environ. , vol.88 , Issue.1-2 , pp. 170-186
    • Small, C.1
  • 39
    • 79952070569 scopus 로고    scopus 로고
    • Per-pixel vs. Object-based classification of urban land cover extraction using high spatial resolution imagery
    • S. W. Myint, P. Gober, A. Brazel, S. Grossman-Clarke, and Q. Weng, "Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery," Remote Sens. Environ., vol. 115, no. 5, pp. 1145-1161, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.5 , pp. 1145-1161
    • Myint, S.W.1    Gober, P.2    Brazel, A.3    Grossman-Clarke, S.4    Weng, Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.