-
1
-
-
0034020453
-
The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands
-
Blair, R. M., Fang, H., Branham, W. S., Hass, B. S., Dial, S. L., Moland, C. L., et al. (2000). The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol. Sci. 54, 138-153. doi: 10.1093/toxsci/54.1.138
-
(2000)
Toxicol. Sci.
, vol.54
, pp. 138-153
-
-
Blair, R.M.1
Fang, H.2
Branham, W.S.3
Hass, B.S.4
Dial, S.L.5
Moland, C.L.6
-
2
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. doi: 10.1023/A:1010933404324
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
84906303709
-
Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC: The National Academies Press. Cruz-Monteagudo, M., Medina-Franco, J., Pérez-Castillo, Y., Nicolotti, O., Cordeiro, M. N., and Borges, F. (2014). Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde?
-
Committee on Toxicity Testing Assessment of Environmental Agents N.R.C. (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC: The National Academies Press. Cruz-Monteagudo, M., Medina-Franco, J., Pérez-Castillo, Y., Nicolotti, O., Cordeiro, M. N., and Borges, F. (2014). Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov. Today 19, 1069-1080. doi: 10.1016/j.drudis.2014.02.003
-
(2007)
Drug Discov. Today
, vol.19
, pp. 1069-1080
-
-
-
5
-
-
84893798714
-
Prediction of the Estrogen Receptor Binding Affinity for both hER(alpha) and hER(beta) by QSAR Approaches
-
Deng, C. L., Chen, X. X., Lu, H. Y., Yang, X., Luan, F., and Cordeiro, M. (2014). Prediction of the Estrogen Receptor Binding Affinity for both hER(alpha) and hER(beta) by QSAR Approaches. Lett. Drug Des. Disc. 11, 265-278. doi: 10.2174/15701808113109990067
-
(2014)
Lett. Drug Des. Disc.
, vol.11
, pp. 265-278
-
-
Deng, C.L.1
Chen, X.X.2
Lu, H.Y.3
Yang, X.4
Luan, F.5
Cordeiro, M.6
-
6
-
-
77957691065
-
The EDKB: an established knowledge base for endocrine disrupting chemicals.
-
Ding, D., Xu, L., Fang, H., Hong, H., Perkins, R., Harris, S., et al. (2010). The EDKB: an established knowledge base for endocrine disrupting chemicals. BMC Bioinformatics 11(Suppl 6):S5. doi: 10.1186/1471-2105-11-S6-S5
-
(2010)
BMC Bioinformatics
, vol.11
-
-
Ding, D.1
Xu, L.2
Fang, H.3
Hong, H.4
Perkins, R.5
Harris, S.6
-
7
-
-
0042355453
-
Rational selection of training and test sets for the development of validated QSAR models
-
Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. D., Lee, K. H., and Tropsha, A. (2003). Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. Des. 17, 241-253. doi: 10.1023/A:1025386326946
-
(2003)
J. Comput. Aided Mol. Des.
, vol.17
, pp. 241-253
-
-
Golbraikh, A.1
Shen, M.2
Xiao, Z.3
Xiao, Y.D.4
Lee, K.H.5
Tropsha, A.6
-
8
-
-
0035813112
-
The multifaceted mechanisms of estradiol and estrogen receptor signaling
-
Hall, J. M., Couse, J. F., and Korach, K. S. (2001). The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276, 36869-36872. doi: 10.1074/jbc.r100029200
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36869-36872
-
-
Hall, J.M.1
Couse, J.F.2
Korach, K.S.3
-
9
-
-
0036156262
-
Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts
-
Hong, H., Tong, W., Fang, H., Shi, L., Xie, Q., Wu, J., et al. (2002). Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environ. Health Perspect. 110, 29-36. doi: 10.1289/ehp.0211029
-
(2002)
Environ. Health Perspect.
, vol.110
, pp. 29-36
-
-
Hong, H.1
Tong, W.2
Fang, H.3
Shi, L.4
Xie, Q.5
Wu, J.6
-
10
-
-
39449135396
-
The trouble with QSAR (or how I learned to stop worrying and embrace fallacy)
-
Johnson, S. R. (2008). The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J. Chem. Inf. Model. 48, 25-26. doi: 10.1021/ci700332k
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 25-26
-
-
Johnson, S.R.1
-
11
-
-
84964810430
-
Mechanism profiling of hepatotoxicity caused by oxidative stress using the antioxidant response element reporter gene assay models and big data.
-
Kim, M., Huang, R., Sedykh, A., Zhang, J., Xia, M., and Zhu, H. (2016). Mechanism profiling of hepatotoxicity caused by oxidative stress using the antioxidant response element reporter gene assay models and big data. Environ. Health Perspect. doi: 10.1289/ehp.1509763.
-
(2016)
Environ. Health Perspect.
-
-
Kim, M.1
Huang, R.2
Sedykh, A.3
Zhang, J.4
Xia, M.5
Zhu, H.6
-
12
-
-
84897106909
-
Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches
-
Kim, M. T., Sedykh, A., Chakravarti, S. K., Saiakhov, R. D., and Zhu, H. (2014). Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharm. Res. 31, 1002-1014. doi: 10.1007/s11095-013-1222-1
-
(2014)
Pharm. Res.
, vol.31
, pp. 1002-1014
-
-
Kim, M.T.1
Sedykh, A.2
Chakravarti, S.K.3
Saiakhov, R.D.4
Zhu, H.5
-
13
-
-
78650175254
-
The importance of molecular structures, endpoints' values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders
-
Li, J., and Gramatica, P. (2010). The importance of molecular structures, endpoints' values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders. Mol. Divers. 14, 687-696. doi: 10.1007/s11030-009-9212-2
-
(2010)
Mol. Divers.
, vol.14
, pp. 687-696
-
-
Li, J.1
Gramatica, P.2
-
14
-
-
38649111953
-
Evaluation and QSAR modeling on multiple endpoints of estrogen activity based on different bioassays
-
Liu, H., Papa, E., and Gramatica, P. (2008). Evaluation and QSAR modeling on multiple endpoints of estrogen activity based on different bioassays. Chemosphere 70, 1889-1897. doi: 10.1016/j.chemosphere.2007.07.071
-
(2008)
Chemosphere
, vol.70
, pp. 1889-1897
-
-
Liu, H.1
Papa, E.2
Gramatica, P.3
-
15
-
-
80052811674
-
Review of QSAR Models and Software Tools for Predicting Developmental and Reproductive Toxicity.
-
Luxemborg: Publications Office of the European Union.
-
Lo Piparo, E., and Worth, A. (2010). Review of QSAR Models and Software Tools for Predicting Developmental and Reproductive Toxicity. Luxemborg: Publications Office of the European Union. doi: 10.2788/9628
-
(2010)
-
-
Lo Piparo, E.1
Worth, A.2
-
16
-
-
84882644463
-
Integrative chemical-biological read-across approach for chemical hazard classification
-
Low, Y., Sedykh, A., Fourches, D., Golbraikh, A., Whelan, M., Rusyn, I., et al. (2013). Integrative chemical-biological read-across approach for chemical hazard classification. Chem. Res. Toxicol. 26, 1199-1208. doi: 10.1021/tx400110f
-
(2013)
Chem. Res. Toxicol.
, vol.26
, pp. 1199-1208
-
-
Low, Y.1
Sedykh, A.2
Fourches, D.3
Golbraikh, A.4
Whelan, M.5
Rusyn, I.6
-
17
-
-
33746931581
-
On outliers and activity cliffs-why QSAR often disappoints
-
Maggiora, G. M. (2006). On outliers and activity cliffs-why QSAR often disappoints. J. Chem. Inf. Model. 46, 1535-1535. doi: 10.1021/ci060117s
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1535-1535
-
-
Maggiora, G.M.1
-
18
-
-
2642544592
-
Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter
-
Métivier, R., Penot, G., Hübner, M. R., Reid, G., Brand, H., Kos, M., et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751-763. doi: 10.1016/S0092-8674(03)00934-6
-
(2003)
Cell
, vol.115
, pp. 751-763
-
-
Métivier, R.1
Penot, G.2
Hübner, M.R.3
Reid, G.4
Brand, H.5
Kos, M.6
-
19
-
-
84904993806
-
Machine learning methods in chemoinformatics
-
Mitchell, J. B. O. (2014). Machine learning methods in chemoinformatics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 468-481. doi: 10.1002/wcms.1183
-
(2014)
Wiley Interdiscip. Rev. Comput. Mol. Sci.
, vol.4
, pp. 468-481
-
-
Mitchell, J.B.O.1
-
20
-
-
0035654437
-
Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice
-
Mueller, S. O., and Korach, K. S. (2001). Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice. Curr. Opin. Pharmacol. 1, 613-619. doi: 10.1016/S1471-4892(01)00105-9
-
(2001)
Curr. Opin. Pharmacol.
, vol.1
, pp. 613-619
-
-
Mueller, S.O.1
Korach, K.S.2
-
21
-
-
85063845705
-
-
Accessed September 15 2015
-
National Center for Biotechnology Information (2015). PubChem BioAssay Database; AID=743077. (Accessed September 15, 2015).
-
(2015)
PubChem BioAssay Database; AID=743077.
-
-
-
22
-
-
84951282981
-
Development and validation of decision forest model for estrogen receptor binding prediction of chemicals using large data sets.
-
Ng, H. W., Luo, H., Ye, H., Ge, W., Tong, W., Hong, H., et al. (2015). Development and validation of decision forest model for estrogen receptor binding prediction of chemicals using large data sets. Chem. Res. Toxicol. 28, 2343-2351. doi: 10.1021/acs.chemrestox.5b00358
-
(2015)
Chem. Res. Toxicol.
, vol.28
, pp. 2343-2351
-
-
Ng, H.W.1
Luo, H.2
Ye, H.3
Ge, W.4
Tong, W.5
Hong, H.6
-
23
-
-
84926370431
-
Read-across approaches-Misconceptions, promises and challenges ahead
-
Patlewicz, G., Ball, N., Becker, R. A., Booth, E. D., Cronin, M. T. D., Kroese, D., et al. (2014). Read-across approaches-Misconceptions, promises and challenges ahead. Arch. Med. Vet. 46, 387-396. doi: 10.14573/altex.1410071
-
(2014)
Arch. Med. Vet.
, vol.46
, pp. 387-396
-
-
Patlewicz, G.1
Ball, N.2
Becker, R.A.3
Booth, E.D.4
Cronin, M.T.D.5
Kroese, D.6
-
24
-
-
82755163097
-
A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation
-
Purcell, D. J., Jeong, K. W., Bittencourt, D., Gerke, D. S., and Stallcup, M. R. (2011). A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation. J. Biol. Chem. 286, 41963-41971. doi: 10.1074/jbc.m111.298463
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 41963-41971
-
-
Purcell, D.J.1
Jeong, K.W.2
Bittencourt, D.3
Gerke, D.S.4
Stallcup, M.R.5
-
25
-
-
81255188805
-
Endocrine disrupting chemicals and disease susceptibility
-
Schug, T. T., Janesick, A., Blumberg, B., and Heindel, J. J. (2011). Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 127, 204-215. doi: 10.1016/j.jsbmb.2011.08.007
-
(2011)
J. Steroid Biochem. Mol. Biol.
, vol.127
, pp. 204-215
-
-
Schug, T.T.1
Janesick, A.2
Blumberg, B.3
Heindel, J.J.4
-
26
-
-
70450181710
-
How to recognize and workaround pitfalls in QSAR studies: a critical review
-
Scior, T., Medina-Franco, J., Do, Q. T., Martínez-Mayorga, K., Rojas, J., and Bernard, P. (2009). How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr. Med. Chem. 16, 4297-4313. doi: 10.2174/092986709789578213
-
(2009)
Curr. Med. Chem.
, vol.16
, pp. 4297-4313
-
-
Scior, T.1
Medina-Franco, J.2
Do, Q.T.3
Martínez-Mayorga, K.4
Rojas, J.5
Bernard, P.6
-
27
-
-
79952352704
-
Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity
-
Sedykh, A., Zhu, H., Tang, H., Zhang, L., Richard, A., Rusyn, I., et al. (2011). Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ. Health Perspect. 119, 364-370. doi: 10.1289/ehp.1002476
-
(2011)
Environ. Health Perspect.
, vol.119
, pp. 364-370
-
-
Sedykh, A.1
Zhu, H.2
Tang, H.3
Zhang, L.4
Richard, A.5
Rusyn, I.6
-
28
-
-
34249109067
-
QSAR and mechanistic interpretation of estrogen receptor binding
-
Serafimova, R., Todorov, M., Nedelcheva, D., Pavlov, T., Mekenyan, O., Akahori, Y., et al. (2007). QSAR and mechanistic interpretation of estrogen receptor binding. SAR QSAR Environ. Res. 18, 389-421. doi: 10.1080/10629360601053992
-
(2007)
SAR QSAR Environ. Res.
, vol.18
, pp. 389-421
-
-
Serafimova, R.1
Todorov, M.2
Nedelcheva, D.3
Pavlov, T.4
Mekenyan, O.5
Akahori, Y.6
-
29
-
-
78651482291
-
Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action
-
Shanle, E. K., and Xu, W. (2011). Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem. Res. Toxicol. 24, 6-19. doi: 10.1021/tx100231n
-
(2011)
Chem. Res. Toxicol.
, vol.24
, pp. 6-19
-
-
Shanle, E.K.1
Xu, W.2
-
30
-
-
84871210792
-
Predicting chemical ocular toxicity using a combinatorial QSAR approach
-
Solimeo, R., Kim, M., Zhu, H., Zhang, J., and Sedykh, A. (2012). Predicting chemical ocular toxicity using a combinatorial QSAR approach. Chem. Res. Toxicol. 25, 2763-2769. doi: 10.1021/tx300393v
-
(2012)
Chem. Res. Toxicol.
, vol.25
, pp. 2763-2769
-
-
Solimeo, R.1
Kim, M.2
Zhu, H.3
Zhang, J.4
Sedykh, A.5
-
31
-
-
71849088425
-
Pharmacophore and QSAR modeling of estrogen receptor ß ligands and subsequent validation and in silico search for new hits
-
Taha, M. O., Tarairah, M., Zalloum, H., and Abu-Sheikha, G. (2010). Pharmacophore and QSAR modeling of estrogen receptor ß ligands and subsequent validation and in silico search for new hits. J. Mol. Graph. Model. 28, 383-400. doi: 10.1016/j.jmgm.2009.09.005
-
(2010)
J. Mol. Graph. Model.
, vol.28
, pp. 383-400
-
-
Taha, M.O.1
Tarairah, M.2
Zalloum, H.3
Abu-Sheikha, G.4
-
32
-
-
36949022890
-
Predictive QSAR modeling workflow, model applicability domains, and virtual screening
-
Tropsha, A., and Golbraikh, A. (2007). Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 13, 3494-3504. doi: 10.2174/138161207782794257
-
(2007)
Curr. Pharm. Des.
, vol.13
, pp. 3494-3504
-
-
Tropsha, A.1
Golbraikh, A.2
-
33
-
-
23844494772
-
Cytochrome P450-mediated metabolism of estrogens and its regulation in human
-
Tsuchiya, Y., Nakajima, M., and Yokoi, T. (2005). Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 227, 115-124. doi: 10.1016/j.canlet.2004.10.007
-
(2005)
Cancer Lett.
, vol.227
, pp. 115-124
-
-
Tsuchiya, Y.1
Nakajima, M.2
Yokoi, T.3
-
35
-
-
84860999989
-
VirtualToxLab - A platform for estimating the toxic potential of drugs, chemicals and natural products
-
Vedani, A., Dobler, M., and Smieško, M. (2012). VirtualToxLab - A platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicol. Appl. Pharmacol. 261, 142-153. doi: 10.1016/j.taap.2012.03.018
-
(2012)
Toxicol. Appl. Pharmacol.
, vol.261
, pp. 142-153
-
-
Vedani, A.1
Dobler, M.2
Smieško, M.3
-
36
-
-
78449275390
-
Chembench: a cheminformatics workbench
-
Walker, T., Grulke, C. M., Tropsha, A., and Pozefsky, D. (2010). Chembench: a cheminformatics workbench. Bioinformatics 26, 3000-3001. doi: 10.1093/bioinformatics/btq556
-
(2010)
Bioinformatics
, vol.26
, pp. 3000-3001
-
-
Walker, T.1
Grulke, C.M.2
Tropsha, A.3
Pozefsky, D.4
-
37
-
-
84938739311
-
Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in QSAR modeling
-
Wang, W., Kim, M., Sedykh, A., and Zhu, H. (2015). Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in QSAR modeling. Pharm. Res. 32, 3055-3065. doi: 10.1007/s11095-015-1687-1
-
(2015)
Pharm. Res.
, vol.32
, pp. 3055-3065
-
-
Wang, W.1
Kim, M.2
Sedykh, A.3
Zhu, H.4
-
38
-
-
33751246188
-
Similarity-based virtual screening using 2D fingerprints
-
Willett, P. (2006). Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 11, 1046-1053. doi: 10.1016/j.drudis.2006.10.005
-
(2006)
Drug Discov. Today
, vol.11
, pp. 1046-1053
-
-
Willett, P.1
-
39
-
-
84896504827
-
Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods
-
Zang, Q., Rotroff, D. M., and Judson, R. S. (2013). Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. J. Chem. Inf. Model. 53, 3244-3261. doi: 10.1021/ci400527b
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3244-3261
-
-
Zang, Q.1
Rotroff, D.M.2
Judson, R.S.3
-
40
-
-
84903291814
-
Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.
-
Zhang, J., Zhu, H., and Hsieh, J. H. (2014). Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology. PLoS ONE 9:e99863. doi: 10.1371/journal.pone.0099863
-
(2014)
PLoS ONE
, vol.9
-
-
Zhang, J.1
Zhu, H.2
Hsieh, J.H.3
-
41
-
-
84882809589
-
Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches
-
Zhang, L., Sedykh, A., Tripathi, A., Zhu, H., Afantitis, A., Mouchlis, V. D., et al. (2013). Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches. Toxicol. Appl. Pharmacol. 272, 67-76. doi: 10.1016/j.taap.2013.04.032
-
(2013)
Toxicol. Appl. Pharmacol.
, vol.272
, pp. 67-76
-
-
Zhang, L.1
Sedykh, A.2
Tripathi, A.3
Zhu, H.4
Afantitis, A.5
Mouchlis, V.D.6
-
42
-
-
0000378338
-
Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle
-
Zheng, W., and Tropsha, A. (2000). Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle. J. Chem. Inf. Comput. Sci. 40, 185-194. doi: 10.1021/ci980033m
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, pp. 185-194
-
-
Zheng, W.1
Tropsha, A.2
-
43
-
-
73849128409
-
Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure
-
Zhu, H., Martin, T. M., Ye, L., Sedykh, A., Young, D. M., and Tropsha, A. (2009). Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chem. Res. Toxicol. 22, 1913-1921. doi: 10.1021/tx900189p
-
(2009)
Chem. Res. Toxicol.
, vol.22
, pp. 1913-1921
-
-
Zhu, H.1
Martin, T.M.2
Ye, L.3
Sedykh, A.4
Young, D.M.5
Tropsha, A.6
-
44
-
-
45749129400
-
Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity
-
Zhu, H., Rusyn, I., Richard, A., and Tropsha, A. (2008b). Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. Environ. Health Perspect. 116, 506-513. doi: 10.1289/ehp.10573
-
(2008)
Environ. Health Perspect.
, vol.116
, pp. 506-513
-
-
Zhu, H.1
Rusyn, I.2
Richard, A.3
Tropsha, A.4
-
45
-
-
44449173096
-
Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis
-
Zhu, H., Tropsha, A., Fourches, D., Varnek, A., Papa, E., Gramatical, P., et al. (2008a). Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J. Chem. Inf. Model. 48, 766-784. doi: 10.1021/ci700443v
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 766-784
-
-
Zhu, H.1
Tropsha, A.2
Fourches, D.3
Varnek, A.4
Papa, E.5
Gramatical, P.6
-
46
-
-
84908137021
-
Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants
-
Zhu, H., Zhang, J., Kim, M. T., Boison, A., Sedykh, A., and Moran, K. (2014). Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem. Res. Toxicol. 27, 1643-1651. doi: 10.1021/tx500145h
-
(2014)
Chem. Res. Toxicol.
, vol.27
, pp. 1643-1651
-
-
Zhu, H.1
Zhang, J.2
Kim, M.T.3
Boison, A.4
Sedykh, A.5
Moran, K.6
|