-
1
-
-
72849144434
-
Sequencing technologies - the next generation
-
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31-46.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 31-46
-
-
Metzker, M.L.1
-
2
-
-
84859552481
-
Comparative RNA sequencing reveals substantial genetic variation in endangered primates
-
Perry GH, Melsted P, Marioni JC, Wang Y, Bainer R, Pickrell JK, et al. Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Res. 2012;22:602-10.
-
(2012)
Genome Res
, vol.22
, pp. 602-610
-
-
Perry, G.H.1
Melsted, P.2
Marioni, J.C.3
Wang, Y.4
Bainer, R.5
Pickrell, J.K.6
-
3
-
-
84874381107
-
Genome-wide quantitative enhancer activity maps identified by STARR-seq
-
Arnold CD, Gerlach D, Stelzer C, Boryn ŁM, Rath M, Stark A. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 2013;339:1074-7.
-
(2013)
Science
, vol.339
, pp. 1074-1077
-
-
Arnold, C.D.1
Gerlach, D.2
Stelzer, C.3
Boryn, M.4
Rath, M.5
Stark, A.6
-
4
-
-
84948994587
-
Advanced applications of RNA sequencing and challenges
-
Han Y, Gao S, Muegge K, Zhang W, Zhou B. Advanced applications of RNA sequencing and challenges. Bioinforma Biol Insights. 2015;9(Suppl 1):29-46.
-
(2015)
Bioinforma Biol Insights
, vol.9
, pp. 29-46
-
-
Han, Y.1
Gao, S.2
Muegge, K.3
Zhang, W.4
Zhou, B.5
-
5
-
-
84976501363
-
Analysis of aggregated cell-cell statistical distances within pathways unveils therapeutic-resistance mechanisms in circulating tumor cells
-
Schissler AG, Li Q, Chen JL, Kenost C, Achour I, Billheimer DD, et al. Analysis of aggregated cell-cell statistical distances within pathways unveils therapeutic-resistance mechanisms in circulating tumor cells. Bioinformatics. 2016;32:i80-9.
-
(2016)
Bioinformatics
, vol.32
, pp. i80-i89
-
-
Schissler, A.G.1
Li, Q.2
Chen, J.L.3
Kenost, C.4
Achour, I.5
Billheimer, D.D.6
-
7
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16:133-45.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
8
-
-
84962658087
-
Design and computational analysis of single-cell RNA-sequencing experiments
-
Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17. https://doi.org/10.1186/s13059-016-0927-y.
-
(2016)
Genome Biol
, pp. 17
-
-
Bacher, R.1
Kendziorski, C.2
-
9
-
-
84946226911
-
Design and analysis of single-cell sequencing experiments
-
Grün D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163:799-810.
-
(2015)
Cell
, vol.163
, pp. 799-810
-
-
Grün, D.1
Oudenaarden, A.2
-
10
-
-
84956945828
-
Differentially expressed genes and signature pathways of human prostate Cancer
-
Myers JS, von Lersner AK, Robbins CJ, Sang Q-XA. Differentially expressed genes and signature pathways of human prostate Cancer. PLoS One. 2015;10:e0145322.
-
(2015)
PLoS One
, vol.10
-
-
Myers, J.S.1
Lersner, A.K.2
Robbins, C.J.3
Sang, Q.-X.4
-
11
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
-
(2010)
Genome Biol
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
12
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
13
-
-
84876263777
-
EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments
-
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29:1035-43.
-
(2013)
Bioinformatics
, vol.29
, pp. 1035-1043
-
-
Leng, N.1
Dawson, J.A.2
Thomson, J.A.3
Ruotti, V.4
Rissman, A.I.5
Smits, B.M.G.6
-
14
-
-
77955298482
-
baySeq: empirical Bayesian methods for identifying differential expression in sequence count data
-
Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics. 2010;11:422.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 422
-
-
Hardcastle, T.J.1
Kelly, K.A.2
-
15
-
-
79958117254
-
The NBP negative binomial model for assessing differential gene expression from RNA-Seq
-
Di Y, Schafer DW, Cumbie JS, Chang JH. The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Stat Appl Genet Mol Biol. 2011;10. https://doi.org/10.2202/1544-6115.1637.
-
(2011)
Stat Appl Genet Mol Biol
, pp. 10
-
-
Di, Y.1
Schafer, D.W.2
Cumbie, J.S.3
Chang, J.H.4
-
16
-
-
4544341015
-
Linear models and empirical bayes methods for assessing differential expression in microarray experiments
-
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.
-
(2004)
Stat Appl Genet Mol Biol
, vol.3
, pp. 3
-
-
Smyth, G.K.1
-
17
-
-
84926507971
-
Limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
-
(2015)
Nucleic Acids Res
, vol.43
-
-
Ritchie, M.E.1
Phipson, B.2
Wu, D.3
Hu, Y.4
Law, C.W.5
Shi, W.6
-
18
-
-
84886557480
-
Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data
-
Li J, Tibshirani R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat Methods Med Res. 2013;22:519-36.
-
(2013)
Stat Methods Med Res
, vol.22
, pp. 519-536
-
-
Li, J.1
Tibshirani, R.2
-
19
-
-
83055192078
-
Differential expression in RNA-seq: a matter of depth
-
Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21:2213-23.
-
(2011)
Genome Res
, vol.21
, pp. 2213-2223
-
-
Tarazona, S.1
García-Alcalde, F.2
Dopazo, J.3
Ferrer, A.4
Conesa, A.5
-
20
-
-
79958115654
-
A two-stage Poisson model for testing RNA-Seq data
-
Auer PL, Doerge RW. A two-stage Poisson model for testing RNA-Seq data. Stat Appl Genet Mol Biol. 2011;10. https://doi.org/10.2202/1544-6115.1627.
-
(2011)
Stat Appl Genet Mol Biol
, pp. 10
-
-
Auer, P.L.1
Doerge, R.W.2
-
21
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
-
(2014)
Nat Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
23
-
-
53549123008
-
Stochastic gene expression and its consequences
-
Raj A, van Oudenaarden A. Stochastic gene expression and its consequences. Cell. 2008;135:216-26.
-
(2008)
Cell
, vol.135
, pp. 216-226
-
-
Raj, A.1
Oudenaarden, A.2
-
24
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396-401.
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
Tirosh, I.2
Trombetta, J.J.3
Shalek, A.K.4
Gillespie, S.M.5
Wakimoto, H.6
-
25
-
-
84931274624
-
A survey of human brain transcriptome diversity at the single cell level
-
Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A. 2015;112:7285-90.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 7285-7290
-
-
Darmanis, S.1
Sloan, S.A.2
Zhang, Y.3
Enge, M.4
Caneda, C.5
Shuer, L.M.6
-
26
-
-
84859959650
-
High-throughput single-cell manipulation in brain tissue
-
Steinmeyer JD, Yanik MF. High-throughput single-cell manipulation in brain tissue. PLoS One. 2012;7:e35603.
-
(2012)
PLoS One
, vol.7
-
-
Steinmeyer, J.D.1
Yanik, M.F.2
-
27
-
-
84963614956
-
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
-
Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189-96.
-
(2016)
Science
, vol.352
, pp. 189-196
-
-
Tirosh, I.1
Izar, B.2
Prakadan, S.M.3
Wadsworth, M.H.4
Treacy, D.5
Trombetta, J.J.6
-
28
-
-
0037179790
-
Cortical microcircuits: diverse or canonical?
-
Nelson SB. Cortical microcircuits: diverse or canonical? Neuron. 2002;36:19-27.
-
(2002)
Neuron
, vol.36
, pp. 19-27
-
-
Nelson, S.B.1
-
29
-
-
84951574149
-
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16. https://doi.org/10.1186/s13059-015-0844-5.
-
(2015)
Genome Biol
, pp. 16
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
-
30
-
-
84962699056
-
scDD: a statistical approach for identifying differential distributions in single-cell RNA-seq experiments
-
bioRxiv
-
Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. scDD: a statistical approach for identifying differential distributions in single-cell RNA-seq experiments. bioRxiv. 2016:035501. https://doi.org/10.1101/035501.
-
(2016)
, pp. 35501
-
-
Korthauer, K.D.1
Chu, L.-F.2
Newton, M.A.3
Li, Y.4
Thomson, J.5
Stewart, R.6
-
31
-
-
84959927244
-
EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes
-
Nabavi S, Schmolze D, Maitituoheti M, Malladi S, Beck AH. EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes. Bioinformatics. 2016;32:533-41.
-
(2016)
Bioinformatics
, vol.32
, pp. 533-541
-
-
Nabavi, S.1
Schmolze, D.2
Maitituoheti, M.3
Malladi, S.4
Beck, A.H.5
-
32
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
-
33
-
-
84962119091
-
Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data
-
Delmans M, Hemberg M. Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data. BMC Bioinformatics. 2016;17:110.
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 110
-
-
Delmans, M.1
Hemberg, M.2
-
34
-
-
84949293695
-
SINCERA: a pipeline for single-cell RNA-Seq profiling analysis
-
Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput Biol. 2015;11:e1004575.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Guo, M.1
Wang, H.2
Potter, S.S.3
Whitsett, J.A.4
Xu, Y.5
-
35
-
-
84890060756
-
SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization
-
Katayama S, Töhönen V, Linnarsson S, Kere J. SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics. 2013;29:2943-5.
-
(2013)
Bioinformatics
, vol.29
, pp. 2943-2945
-
-
Katayama, S.1
Töhönen, V.2
Linnarsson, S.3
Kere, J.4
-
36
-
-
85060304655
-
DEsingle for detecting three types of differential expression in single-cell RNA-seq data
-
Miao Z, Deng K, Wang X, Zhang X. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics. 2018;34:3223-4.
-
(2018)
Bioinformatics
, vol.34
, pp. 3223-3224
-
-
Miao, Z.1
Deng, K.2
Wang, X.3
Zhang, X.4
-
37
-
-
85046747167
-
SigEMD: a powerful method for differential gene expression analysis in single-cell RNA sequencing data
-
Wang T, Nabavi S. SigEMD: a powerful method for differential gene expression analysis in single-cell RNA sequencing data. Methods San Diego Calif. 2018;145:25-32.
-
(2018)
Methods San Diego Calif
, vol.145
, pp. 25-32
-
-
Wang, T.1
Nabavi, S.2
-
38
-
-
85010878111
-
Single-cell mRNA quantification and differential analysis with census
-
Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C. Single-cell mRNA quantification and differential analysis with census. Nat Methods 2017;advance online publication. doi: https://doi.org/10.1038/nmeth.4150.
-
Nat Methods 2017;advance online publication
-
-
Qiu, X.1
Hill, A.2
Packer, J.3
Lin, D.4
Ma, Y.-A.5
Trapnell, C.6
-
39
-
-
84992327075
-
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
-
Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 2016;17. https://doi.org/10.1186/s13059-016-1077-y.
-
(2016)
Genome Biol
, pp. 17
-
-
Korthauer, K.D.1
Chu, L.-F.2
Newton, M.A.3
Li, Y.4
Thomson, J.5
Stewart, R.6
-
40
-
-
85037359221
-
Comparison of methods to detect differentially expressed genes between single-cell populations
-
Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. https://doi.org/10.1093/bib/bbw057.
-
Brief Bioinform
-
-
Jaakkola, M.K.1
Seyednasrollah, F.2
Mehmood, A.3
Elo, L.L.4
-
41
-
-
85042780617
-
Differential expression analyses for single-cell RNA-Seq: old questions on new data
-
Miao Z, Zhang X. Differential expression analyses for single-cell RNA-Seq: old questions on new data. Quant Biol. 2016;4:243-60.
-
(2016)
Quant Biol
, vol.4
, pp. 243-260
-
-
Miao, Z.1
Zhang, X.2
-
42
-
-
85031926739
-
Single-cell RNA-sequencing: assessment of differential expression analysis methods
-
Dal Molin A, Baruzzo G, Di Camillo B. Single-cell RNA-sequencing: assessment of differential expression analysis methods. Front Genet. 2017;8. https://doi.org/10.3389/fgene.2017.00062.
-
(2017)
Front Genet
, pp. 8
-
-
Dal Molin, A.1
Baruzzo, G.2
Di Camillo, B.3
-
43
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
-
(2014)
Genome Biol
, vol.15
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
44
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289-300.
-
(1995)
J R Stat Soc Ser B Methodol
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
45
-
-
84964927929
-
-
Vienna: R Foundation for Statistical Computing
-
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. URL https://www.R-project.org /. https://www.R-project.org/
-
(2016)
R: a language and environment for statistical computing
-
-
-
46
-
-
79959403670
-
Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
-
Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160-7.
-
(2011)
Genome Res
, vol.21
, pp. 1160-1167
-
-
Islam, S.1
Kjällquist, U.2
Moliner, A.3
Zajac, P.4
Fan, J.-B.5
Lönnerberg, P.6
-
47
-
-
43049145864
-
Mouse embryonic stem cell-derived spheres with distinct neurogenic potentials
-
Moliner A, Enfors P, Ibáñez CF, Andäng M. Mouse embryonic stem cell-derived spheres with distinct neurogenic potentials. Stem Cells Dev. 2008;17:233-43.
-
(2008)
Stem Cells Dev
, vol.17
, pp. 233-243
-
-
Moliner, A.1
Enfors, P.2
Ibáñez, C.F.3
Andäng, M.4
-
48
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11:637-40.
-
(2014)
Nat Methods
, vol.11
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
Oudenaarden, A.3
|