메뉴 건너뛰기




Volumn 20, Issue 1, 2019, Pages

Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data

Author keywords

Comparative analysis; Differential gene expression analysis; RNAseq; Single cell

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; RNA;

EID: 85060160036     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-019-2599-6     Document Type: Article
Times cited : (205)

References (48)
  • 1
    • 72849144434 scopus 로고    scopus 로고
    • Sequencing technologies - the next generation
    • Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31-46.
    • (2010) Nat Rev Genet , vol.11 , pp. 31-46
    • Metzker, M.L.1
  • 2
    • 84859552481 scopus 로고    scopus 로고
    • Comparative RNA sequencing reveals substantial genetic variation in endangered primates
    • Perry GH, Melsted P, Marioni JC, Wang Y, Bainer R, Pickrell JK, et al. Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Res. 2012;22:602-10.
    • (2012) Genome Res , vol.22 , pp. 602-610
    • Perry, G.H.1    Melsted, P.2    Marioni, J.C.3    Wang, Y.4    Bainer, R.5    Pickrell, J.K.6
  • 3
    • 84874381107 scopus 로고    scopus 로고
    • Genome-wide quantitative enhancer activity maps identified by STARR-seq
    • Arnold CD, Gerlach D, Stelzer C, Boryn ŁM, Rath M, Stark A. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 2013;339:1074-7.
    • (2013) Science , vol.339 , pp. 1074-1077
    • Arnold, C.D.1    Gerlach, D.2    Stelzer, C.3    Boryn, M.4    Rath, M.5    Stark, A.6
  • 5
    • 84976501363 scopus 로고    scopus 로고
    • Analysis of aggregated cell-cell statistical distances within pathways unveils therapeutic-resistance mechanisms in circulating tumor cells
    • Schissler AG, Li Q, Chen JL, Kenost C, Achour I, Billheimer DD, et al. Analysis of aggregated cell-cell statistical distances within pathways unveils therapeutic-resistance mechanisms in circulating tumor cells. Bioinformatics. 2016;32:i80-9.
    • (2016) Bioinformatics , vol.32 , pp. i80-i89
    • Schissler, A.G.1    Li, Q.2    Chen, J.L.3    Kenost, C.4    Achour, I.5    Billheimer, D.D.6
  • 7
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16:133-45.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 8
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17. https://doi.org/10.1186/s13059-016-0927-y.
    • (2016) Genome Biol , pp. 17
    • Bacher, R.1    Kendziorski, C.2
  • 9
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grün D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163:799-810.
    • (2015) Cell , vol.163 , pp. 799-810
    • Grün, D.1    Oudenaarden, A.2
  • 10
    • 84956945828 scopus 로고    scopus 로고
    • Differentially expressed genes and signature pathways of human prostate Cancer
    • Myers JS, von Lersner AK, Robbins CJ, Sang Q-XA. Differentially expressed genes and signature pathways of human prostate Cancer. PLoS One. 2015;10:e0145322.
    • (2015) PLoS One , vol.10
    • Myers, J.S.1    Lersner, A.K.2    Robbins, C.J.3    Sang, Q.-X.4
  • 11
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 12
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 14
    • 77955298482 scopus 로고    scopus 로고
    • baySeq: empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics. 2010;11:422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 15
    • 79958117254 scopus 로고    scopus 로고
    • The NBP negative binomial model for assessing differential gene expression from RNA-Seq
    • Di Y, Schafer DW, Cumbie JS, Chang JH. The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Stat Appl Genet Mol Biol. 2011;10. https://doi.org/10.2202/1544-6115.1637.
    • (2011) Stat Appl Genet Mol Biol , pp. 10
    • Di, Y.1    Schafer, D.W.2    Cumbie, J.S.3    Chang, J.H.4
  • 16
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.
    • (2004) Stat Appl Genet Mol Biol , vol.3 , pp. 3
    • Smyth, G.K.1
  • 17
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
    • (2015) Nucleic Acids Res , vol.43
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6
  • 18
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data
    • Li J, Tibshirani R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat Methods Med Res. 2013;22:519-36.
    • (2013) Stat Methods Med Res , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 20
    • 79958115654 scopus 로고    scopus 로고
    • A two-stage Poisson model for testing RNA-Seq data
    • Auer PL, Doerge RW. A two-stage Poisson model for testing RNA-Seq data. Stat Appl Genet Mol Biol. 2011;10. https://doi.org/10.2202/1544-6115.1627.
    • (2011) Stat Appl Genet Mol Biol , pp. 10
    • Auer, P.L.1    Doerge, R.W.2
  • 21
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
    • (2014) Nat Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 23
    • 53549123008 scopus 로고    scopus 로고
    • Stochastic gene expression and its consequences
    • Raj A, van Oudenaarden A. Stochastic gene expression and its consequences. Cell. 2008;135:216-26.
    • (2008) Cell , vol.135 , pp. 216-226
    • Raj, A.1    Oudenaarden, A.2
  • 26
    • 84859959650 scopus 로고    scopus 로고
    • High-throughput single-cell manipulation in brain tissue
    • Steinmeyer JD, Yanik MF. High-throughput single-cell manipulation in brain tissue. PLoS One. 2012;7:e35603.
    • (2012) PLoS One , vol.7
    • Steinmeyer, J.D.1    Yanik, M.F.2
  • 27
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    • Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189-96.
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1    Izar, B.2    Prakadan, S.M.3    Wadsworth, M.H.4    Treacy, D.5    Trombetta, J.J.6
  • 28
    • 0037179790 scopus 로고    scopus 로고
    • Cortical microcircuits: diverse or canonical?
    • Nelson SB. Cortical microcircuits: diverse or canonical? Neuron. 2002;36:19-27.
    • (2002) Neuron , vol.36 , pp. 19-27
    • Nelson, S.B.1
  • 29
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16. https://doi.org/10.1186/s13059-015-0844-5.
    • (2015) Genome Biol , pp. 16
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6
  • 30
    • 84962699056 scopus 로고    scopus 로고
    • scDD: a statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    • bioRxiv
    • Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. scDD: a statistical approach for identifying differential distributions in single-cell RNA-seq experiments. bioRxiv. 2016:035501. https://doi.org/10.1101/035501.
    • (2016) , pp. 35501
    • Korthauer, K.D.1    Chu, L.-F.2    Newton, M.A.3    Li, Y.4    Thomson, J.5    Stewart, R.6
  • 31
    • 84959927244 scopus 로고    scopus 로고
    • EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes
    • Nabavi S, Schmolze D, Maitituoheti M, Malladi S, Beck AH. EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes. Bioinformatics. 2016;32:533-41.
    • (2016) Bioinformatics , vol.32 , pp. 533-541
    • Nabavi, S.1    Schmolze, D.2    Maitituoheti, M.3    Malladi, S.4    Beck, A.H.5
  • 32
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 33
    • 84962119091 scopus 로고    scopus 로고
    • Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data
    • Delmans M, Hemberg M. Discrete distributional differential expression (D3E) - a tool for gene expression analysis of single-cell RNA-seq data. BMC Bioinformatics. 2016;17:110.
    • (2016) BMC Bioinformatics , vol.17 , pp. 110
    • Delmans, M.1    Hemberg, M.2
  • 35
    • 84890060756 scopus 로고    scopus 로고
    • SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization
    • Katayama S, Töhönen V, Linnarsson S, Kere J. SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics. 2013;29:2943-5.
    • (2013) Bioinformatics , vol.29 , pp. 2943-2945
    • Katayama, S.1    Töhönen, V.2    Linnarsson, S.3    Kere, J.4
  • 36
    • 85060304655 scopus 로고    scopus 로고
    • DEsingle for detecting three types of differential expression in single-cell RNA-seq data
    • Miao Z, Deng K, Wang X, Zhang X. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics. 2018;34:3223-4.
    • (2018) Bioinformatics , vol.34 , pp. 3223-3224
    • Miao, Z.1    Deng, K.2    Wang, X.3    Zhang, X.4
  • 37
    • 85046747167 scopus 로고    scopus 로고
    • SigEMD: a powerful method for differential gene expression analysis in single-cell RNA sequencing data
    • Wang T, Nabavi S. SigEMD: a powerful method for differential gene expression analysis in single-cell RNA sequencing data. Methods San Diego Calif. 2018;145:25-32.
    • (2018) Methods San Diego Calif , vol.145 , pp. 25-32
    • Wang, T.1    Nabavi, S.2
  • 39
    • 84992327075 scopus 로고    scopus 로고
    • A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    • Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 2016;17. https://doi.org/10.1186/s13059-016-1077-y.
    • (2016) Genome Biol , pp. 17
    • Korthauer, K.D.1    Chu, L.-F.2    Newton, M.A.3    Li, Y.4    Thomson, J.5    Stewart, R.6
  • 40
    • 85037359221 scopus 로고    scopus 로고
    • Comparison of methods to detect differentially expressed genes between single-cell populations
    • Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. https://doi.org/10.1093/bib/bbw057.
    • Brief Bioinform
    • Jaakkola, M.K.1    Seyednasrollah, F.2    Mehmood, A.3    Elo, L.L.4
  • 41
    • 85042780617 scopus 로고    scopus 로고
    • Differential expression analyses for single-cell RNA-Seq: old questions on new data
    • Miao Z, Zhang X. Differential expression analyses for single-cell RNA-Seq: old questions on new data. Quant Biol. 2016;4:243-60.
    • (2016) Quant Biol , vol.4 , pp. 243-260
    • Miao, Z.1    Zhang, X.2
  • 42
    • 85031926739 scopus 로고    scopus 로고
    • Single-cell RNA-sequencing: assessment of differential expression analysis methods
    • Dal Molin A, Baruzzo G, Di Camillo B. Single-cell RNA-sequencing: assessment of differential expression analysis methods. Front Genet. 2017;8. https://doi.org/10.3389/fgene.2017.00062.
    • (2017) Front Genet , pp. 8
    • Dal Molin, A.1    Baruzzo, G.2    Di Camillo, B.3
  • 43
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 44
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289-300.
    • (1995) J R Stat Soc Ser B Methodol , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 45
    • 84964927929 scopus 로고    scopus 로고
    • Vienna: R Foundation for Statistical Computing
    • R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. URL https://www.R-project.org /. https://www.R-project.org/
    • (2016) R: a language and environment for statistical computing
  • 46
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160-7.
    • (2011) Genome Res , vol.21 , pp. 1160-1167
    • Islam, S.1    Kjällquist, U.2    Moliner, A.3    Zajac, P.4    Fan, J.-B.5    Lönnerberg, P.6
  • 47
    • 43049145864 scopus 로고    scopus 로고
    • Mouse embryonic stem cell-derived spheres with distinct neurogenic potentials
    • Moliner A, Enfors P, Ibáñez CF, Andäng M. Mouse embryonic stem cell-derived spheres with distinct neurogenic potentials. Stem Cells Dev. 2008;17:233-43.
    • (2008) Stem Cells Dev , vol.17 , pp. 233-243
    • Moliner, A.1    Enfors, P.2    Ibáñez, C.F.3    Andäng, M.4
  • 48
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11:637-40.
    • (2014) Nat Methods , vol.11 , pp. 637-640
    • Grün, D.1    Kester, L.2    Oudenaarden, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.