메뉴 건너뛰기




Volumn 123, Issue 1, 2017, Pages 32-73

Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations

Author keywords

Attributes; Computer vision; Crowdsourcing; Dataset; Image; Knowledge; Language; Objects; Question answering; Relationships; Scene graph

Indexed keywords

COGNITIVE SYSTEMS; COMPUTER VISION; CROWDSOURCING; GENES; VEHICLES;

EID: 85011596790     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-016-0981-7     Document Type: Article
Times cited : (5114)

References (112)
  • 1
    • 84973890960 scopus 로고    scopus 로고
    • In International conference on computer vision (ICCV)
    • Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., et al
    • Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., et al. (2015). VQA: Visual question answering. In International conference on computer vision (ICCV).
    • (2015) VQA: Visual question answering
  • 2
    • 84906498422 scopus 로고    scopus 로고
    • In European conference on computer vision (pp. 401–416). Springer
    • Antol, S., Zitnick, C. L., & Parikh, D
    • Antol, S., Zitnick, C. L., & Parikh, D. (2014). Zero-shot learning via visual abstraction. In European conference on computer vision (pp. 401–416). Springer.
    • (2014) Zero-shot learning via visual abstraction
  • 3
    • 85018060315 scopus 로고    scopus 로고
    • Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley framenet project. In Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics—Volume 1, ACL’9PA: Association for Computational Linguistics
    • Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley framenet project. In Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics—Volume 1, ACL’98 (pp. 86–90). Stroudsburg, PA: Association for Computational Linguistics.
    • (1998) Stroudsburg
  • 5
    • 85018037997 scopus 로고    scopus 로고
    • In Proceedings of the COLING/ACL on interactive presentation sessions (pp. 69–72). Association for Computational Linguistics
    • Bird, S
    • Bird, S. (2006). NLTK: The natural language toolkit. In Proceedings of the COLING/ACL on interactive presentation sessions (pp. 69–72). Association for Computational Linguistics.
    • (2006) NLTK: The natural language toolkit
  • 6
    • 0000794042 scopus 로고
    • Culture and human development: A new look
    • Bruner, J. (1990). Culture and human development: A new look. Human Development, 33(6), 344–355.
    • (1990) Human Development , vol.33 , Issue.6 , pp. 344-355
    • Bruner, J.1
  • 7
    • 80053262847 scopus 로고    scopus 로고
    • In Proceedings of the conference on human language technology and empirical methods in natural language processing (pp. 724–731). Association for Computational Linguistics
    • Bunescu, R. C., & Mooney, R. J
    • Bunescu, R. C., & Mooney, R. J. (2005). A shortest path dependency kernel for relation extraction. In Proceedings of the conference on human language technology and empirical methods in natural language processing (pp. 724–731). Association for Computational Linguistics.
    • (2005) A shortest path dependency kernel for relation extraction
  • 8
    • 84990046210 scopus 로고    scopus 로고
    • Semantic parsing for text to 3D scene generation
    • Chang, A. X., Savva, M., & Manning, C. D. (2014). Semantic parsing for text to 3D scene generation. In ACL 2014 (p. 17).
    • (2014) In ACL , vol.2014 , pp. 17
    • Chang, A.X.1    Savva, M.2    Manning, C.D.3
  • 12
    • 84898803720 scopus 로고    scopus 로고
    • In 2013 IEEE international conference on computer vision (ICCV) (pp. 1409–1416). IEEE
    • Chen, X., Shrivastava, A., & Gupta, A
    • Chen, X., Shrivastava, A., & Gupta, A. (2013). Neil: Extracting visual knowledge from web data. In 2013 IEEE international conference on computer vision (ICCV) (pp. 1409–1416). IEEE.
    • (2013) Neil: Extracting visual knowledge from web data
  • 13
    • 84887394346 scopus 로고    scopus 로고
    • In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 33–40). IEEE
    • Choi, W., Chao, Y.-W., Pantofaru, C., & Savarese, S
    • Choi, W., Chao, Y.-W., Pantofaru, C., & Savarese, S. (2013). Understanding indoor scenes using 3D geometric phrases. In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 33–40). IEEE.
    • (2013) Understanding indoor scenes using 3D geometric phrases
  • 14
    • 85018049956 scopus 로고    scopus 로고
    • In Proceedings of the 42nd annual meeting on association for computational linguistics (p. 423). Association for Computational Linguistics
    • Culotta, A., & Sorensen, J
    • Culotta, A., & Sorensen, J. (2004). Dependency tree kernels for relation extraction. In Proceedings of the 42nd annual meeting on association for computational linguistics (p. 423). Association for Computational Linguistics.
    • (2004) Dependency tree kernels for relation extraction
  • 17
  • 21
    • 84959250180 scopus 로고    scopus 로고
    • Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., et al. (2015). From captions to visual concepts and back. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1473–1482).
  • 23
    • 78149311145 scopus 로고    scopus 로고
    • In Computer vision–ECCV 2010 (pp. 15–29). Springer
    • Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J., et al
    • Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J., et al. (2010). Every picture tells a story: Generating sentences from images. In Computer vision–ECCV 2010 (pp. 15–29). Springer.
    • (2010) Every picture tells a story: Generating sentences from images
  • 24
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., & Perona, P. (2007). Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1), 59–70.
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 27
    • 84937604790 scopus 로고    scopus 로고
    • Cognition does not affect perception: Evaluating the evidence for top-down effects
    • Firestone, C., & Scholl, B. J. (2015). Cognition does not affect perception: Evaluating the evidence for top-down effects. Behavioral and brain sciences (pp. 1–72).
    • (2015) Behavioral and brain sciences , pp. 1-72
    • Firestone, C.1    Scholl, B.J.2
  • 28
    • 0021613150 scopus 로고
    • Qualitative process theory
    • Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence, 24(1), 85–168.
    • (1984) Artificial Intelligence , vol.24 , Issue.1 , pp. 85-168
    • Forbus, K.D.1
  • 32
    • 85119023807 scopus 로고    scopus 로고
    • In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 580–587). IEEE
    • Girshick, R., Donahue, J., Darrell, T., & Malik, J
    • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 580–587). IEEE.
    • (2014) Rich feature hierarchies for accurate object detection and semantic segmentation
  • 33
    • 84911449570 scopus 로고    scopus 로고
    • In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2489–2496). IEEE
    • Goering, C., Rodner, E., Freytag, A., & Denzler, J
    • Goering, C., Rodner, E., Freytag, A., & Denzler, J. (2014). Nonparametric part transfer for fine-grained recognition. In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2489–2496). IEEE.
    • (2014) Nonparametric part transfer for fine-grained recognition
  • 35
    • 84859889184 scopus 로고    scopus 로고
    • In Proceedings of the 43rd annual meeting on association for computational linguistics (pp. 427–434). Association for Computational Linguistics
    • GuoDong, Z., Jian, S., Jie, Z., & Min, Z
    • GuoDong, Z., Jian, S., Jie, Z., & Min, Z. (2005). Exploring various knowledge in relation extraction. In Proceedings of the 43rd annual meeting on association for computational linguistics (pp. 427–434). Association for Computational Linguistics.
    • (2005) Exploring various knowledge in relation extraction
  • 37
    • 69549121743 scopus 로고    scopus 로고
    • Observing human–object interactions: Using spatial and functional compatibility for recognition
    • Gupta, A., Kembhavi, A., & Davis, L. S. (2009). Observing human–object interactions: Using spatial and functional compatibility for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(10), 1775–1789.
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , Issue.10 , pp. 1775-1789
    • Gupta, A.1    Kembhavi, A.2    Davis, L.S.3
  • 38
    • 0346759983 scopus 로고
    • Geneva: Institut pour les études sémantiques et cognitives/Université de Genève
    • Hayes, P. J. (1978). The naive physics manifesto. Geneva: Institut pour les études sémantiques et cognitives/Université de Genève.
    • (1978) The naive physics manifesto
    • Hayes, P.J.1
  • 42
    • 84883394520 scopus 로고    scopus 로고
    • Framing image description as a ranking task: Data, models and evaluation metrics
    • Hodosh, M., Young, P., & Hockenmaier, J. (2013). Framing image description as a ranking task: Data, models and evaluation metrics. Journal of Artificial Intelligence Research, 47(1), 853–899.
    • (2013) Journal of Artificial Intelligence Research , vol.47 , Issue.1 , pp. 853-899
    • Hodosh, M.1    Young, P.2    Hockenmaier, J.3
  • 43
    • 85018080332 scopus 로고    scopus 로고
    • In Intelligent information processing (pp. 77–89). Springer
    • Hou, C.-S. J., Noy, N. F., & Musen, M. A
    • Hou, C.-S. J., Noy, N. F., & Musen, M. A. (2002). A template-based approach toward acquisition of logical sentences. In Intelligent information processing (pp. 77–89). Springer.
    • (2002) A template-based approach toward acquisition of logical sentences
  • 46
    • 85119024224 scopus 로고    scopus 로고
    • In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 232–239). IEEE
    • Izadinia, H., Sadeghi, F., & Farhadi, A
    • Izadinia, H., Sadeghi, F., & Farhadi, A. (2014). Incorporating scene context and object layout into appearance modeling. In 2014 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 232–239). IEEE.
    • (2014) Incorporating scene context and object layout into appearance modeling
  • 47
    • 84959233256 scopus 로고    scopus 로고
    • In IEEE conference on computer vision and pattern recognition (CVPR)
    • Johnson, J., Krishna, R., Stark, M., Li, L.-J., Shamma, D. A., Bernstein, M., et al
    • Johnson, J., Krishna, R., Stark, M., Li, L.-J., Shamma, D. A., Bernstein, M., et al. (2015). Image retrieval using scene graphs. In IEEE conference on computer vision and pattern recognition (CVPR).
    • (2015) Image retrieval using scene graphs
  • 50
    • 85014738021 scopus 로고    scopus 로고
    • In CHI’16-SIGCHI conference on human factors in computing system
    • Krishna, R., Hata, K., Chen, S., Kravitz, J., Shamma, D. A., Fei-Fei, L., et al
    • Krishna, R., Hata, K., Chen, S., Kravitz, J., Shamma, D. A., Fei-Fei, L., et al. (2016). Embracing error to enable rapid crowdsourcing. In CHI’16-SIGCHI conference on human factors in computing system.
    • (2016) Embracing error to enable rapid crowdsourcing
  • 53
    • 0346336042 scopus 로고    scopus 로고
    • Using corpus statistics and wordnet relations for sense identification
    • Leacock, C., Miller, G. A., & Chodorow, M. (1998). Using corpus statistics and wordnet relations for sense identification. Computational Linguistics, 24(1), 147–165.
    • (1998) Computational Linguistics , vol.24 , Issue.1 , pp. 147-165
    • Leacock, C.1    Miller, G.A.2    Chodorow, M.3
  • 55
    • 84906493406 scopus 로고    scopus 로고
    • In Computer vision–ECCV 2014 (pp. 740–755). Springer
    • Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al
    • Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft COCO: Common objects in context. In Computer vision–ECCV 2014 (pp. 740–755). Springer.
    • (2014) Microsoft COCO: Common objects in context
  • 56
    • 85018078208 scopus 로고    scopus 로고
    • In European conference on computer vision (ECCV). IEEE
    • Lu, C., Krishna, R., Bernstein, M., & Fei-Fei, L
    • Lu, C., Krishna, R., Bernstein, M., & Fei-Fei, L. (2016). Visual relationship detection using language priors. In European conference on computer vision (ECCV). IEEE.
    • (2016) Visual relationship detection using language priors
  • 58
    • 84937822746 scopus 로고    scopus 로고
    • A multi-world approach to question answering about real-world scenes based on uncertain input
    • Malinowski, M., & Fritz, M. (2014). A multi-world approach to question answering about real-world scenes based on uncertain input. In Advances in neural information processing systems (pp. 1682–1690).
    • (2014) In Advances in neural information processing systems , pp. 1682-1690
    • Malinowski, M.1    Fritz, M.2
  • 63
    • 85018069107 scopus 로고    scopus 로고
    • The senseval-3 English lexical sample task. Association for Computational Linguistics
    • Mihalcea, R., Chklovski, T. A., & Kilgarriff, A. (2004). The senseval-3 English lexical sample task. Association for Computational Linguistics, UNT Digital Library.
    • (2004) UNT Digital Library
    • Mihalcea, R.1    Chklovski, T.A.2    Kilgarriff, A.3
  • 65
    • 84976702763 scopus 로고
    • Wordnet: a lexical database for english
    • Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM, 38(11), 39–41.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 69
    • 85018067251 scopus 로고    scopus 로고
    • In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311–318). Association for Computational Linguistics
    • Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J
    • Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: A method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311–318). Association for Computational Linguistics.
    • (2002) BLEU: A method for automatic evaluation of machine translation
  • 70
    • 84900870389 scopus 로고    scopus 로고
    • The sun attribute database: Beyond categories for deeper scene understanding
    • Patterson, G., Xu, C., Su, H., & Hays, J. (2014). The sun attribute database: Beyond categories for deeper scene understanding. International Journal of Computer Vision, 108(1–2), 59–81.
    • (2014) International Journal of Computer Vision , vol.108 , Issue.1-2 , pp. 59-81
    • Patterson, G.1    Xu, C.2    Su, H.3    Hays, J.4
  • 71
    • 78149348137 scopus 로고    scopus 로고
    • In Computer vision–ECCV 2010 (pp. 143–156). Springer
    • Perronnin, F., Sánchez, J., & Mensink, T
    • Perronnin, F., Sánchez, J., & Mensink, T. (2010). Improving the fisher kernel for large-scale image classification. In Computer vision–ECCV 2010 (pp. 143–156). Springer.
    • (2010) Improving the fisher kernel for large-scale image classification
  • 76
    • 85018058894 scopus 로고    scopus 로고
    • Describing common human visual actions in images. In X. Xie, M. W. Jones, & G. K. L. Tam (Eds.), Proceedings of the British machine vision conference (BMVC 2015) (pp. 52.1–52.12)
    • Ronchi, M. R., & Perona, P. (2015). Describing common human visual actions in images. In X. Xie, M. W. Jones, & G. K. L. Tam (Eds.), Proceedings of the British machine vision conference (BMVC 2015) (pp. 52.1–52.12). BMVA Press.
    • (2015) BMVA Press
    • Ronchi, M.R.1    Perona, P.2
  • 81
    • 80052889458 scopus 로고    scopus 로고
    • In 2011 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1745–1752). IEEE
    • Sadeghi, M. A., & Farhadi, A
    • Sadeghi, M. A., & Farhadi, A. (2011). Recognition using visual phrases. In 2011 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1745–1752). IEEE.
    • (2011) Recognition using visual phrases
  • 82
    • 84951013363 scopus 로고    scopus 로고
    • In Proceedings of the 33rd annual ACM conference on human factors in computing systems (pp. 1621–1630). ACM
    • Salehi, N., Irani, L. C., & Bernstein, M. S
    • Salehi, N., Irani, L. C., & Bernstein, M. S. (2015). We are dynamo: Overcoming stalling and friction in collective action for crowd workers. In Proceedings of the 33rd annual ACM conference on human factors in computing systems (pp. 1621–1630). ACM.
    • (2015) We are dynamo: Overcoming stalling and friction in collective action for crowd workers
  • 83
    • 0004016411 scopus 로고    scopus 로고
    • Scripts, plans, goals, and understanding: An inquiry into human knowledge structures
    • Schank, R. C., & Abelson, R. P. (2013). Scripts, plans, goals, and understanding: An inquiry into human knowledge structures. Hove: Psychology Press.
    • (2013) Hove: Psychology Press
    • Schank, R.C.1    Abelson, R.P.2
  • 84
    • 79952079965 scopus 로고    scopus 로고
    • VerbNet: A broad-coverage, comprehensive verb lexicon. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA
    • Schuler, K. K. (2005). VerbNet: A broad-coverage, comprehensive verb lexicon. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, USA (AAI3179808).
    • (2005) USA (AAI3179808)
    • Schuler, K.K.1
  • 85
    • 85018069747 scopus 로고    scopus 로고
    • In Proceedings of the fourth workshop on vision and language (pp. 70–80). Citeseer
    • Schuster, S., Krishna, R., Chang, A., Fei-Fei, L., & Manning, C. D
    • Schuster, S., Krishna, R., Chang, A., Fei-Fei, L., & Manning, C. D. (2015). Generating semantically precise scene graphs from textual descriptions for improved image retrieval. In Proceedings of the fourth workshop on vision and language (pp. 70–80). Citeseer.
    • (2015) Generating semantically precise scene graphs from textual descriptions for improved image retrieval
  • 89
    • 80053360508 scopus 로고    scopus 로고
    • In Proceedings of the conference on empirical methods in natural language processing (pp. 254–263). Association for Computational Linguistics
    • Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. Y
    • Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. Y. (2008). Cheap and fast—But is it good?: Evaluating non-expert annotations for natural language tasks. In Proceedings of the conference on empirical methods in natural language processing (pp. 254–263). Association for Computational Linguistics.
    • (2008) Cheap and fast—But is it good?: Evaluating non-expert annotations for natural language tasks
  • 90
    • 84870715081 scopus 로고    scopus 로고
    • In Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning (pp. 1201–1211). Association for Computational Linguistics
    • Socher, R., Huval, B., Manning, C. D., & Ng, A. Y
    • Socher, R., Huval, B., Manning, C. D., & Ng, A. Y. (2012). Semantic compositionality through recursive matrix-vector spaces. In Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning (pp. 1201–1211). Association for Computational Linguistics.
    • (2012) Semantic compositionality through recursive matrix-vector spaces
  • 91
    • 85018038390 scopus 로고    scopus 로고
    • Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document clustering techniques. In KDD workshop on text mining, Boston (Vol. 400, pp. 525–526).
  • 95
    • 8644258401 scopus 로고    scopus 로고
    • A statistical approach to texture classification from single images
    • Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. International Journal of Computer Vision, 62(1–2), 61–81.
    • (2005) International Journal of Computer Vision , vol.62 , Issue.1-2 , pp. 61-81
    • Varma, M.1    Zisserman, A.2
  • 100
    • 77955988947 scopus 로고    scopus 로고
    • In 2010 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3485–3492). IEEE
    • Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A., et al
    • Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A., et al. (2010). Sun database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3485–3492). IEEE.
    • (2010) Sun database: Large-scale scene recognition from abbey to zoo
  • 102
    • 84866704901 scopus 로고    scopus 로고
    • In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3522–3529). IEEE
    • Yang, Y., Baker, S., Kannan, A., & Ramanan, D
    • Yang, Y., Baker, S., Kannan, A., & Ramanan, D. (2012). Recognizing proxemics in personal photos. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3522–3529). IEEE.
    • (2012) Recognizing proxemics in personal photos
  • 104
    • 38349066535 scopus 로고    scopus 로고
    • Yao, B., Yang, X., & Zhu, S.-Cannotation tool and benchmarks. In Energy minimization methods in computer vision and pattern recognition (pp. 169–183). Springer
    • Yao, B., Yang, X., & Zhu, S.-C. (2007). Introduction to a large-scale general purpose ground truth database: methodology, annotation tool and benchmarks. In Energy minimization methods in computer vision and pattern recognition (pp. 169–183). Springer.
    • (2007) Introduction to a large-scale general purpose ground truth database: methodology
  • 105
    • 84906494296 scopus 로고    scopus 로고
    • From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
    • Young, P., Lai, A., Hodosh, M., & Hockenmaier, J. (2014). From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. Transactions of the Association for Computational Linguistics, 2, 67–78.
    • (2014) Transactions of the Association for Computational Linguistics , vol.2 , pp. 67-78
    • Young, P.1    Lai, A.2    Hodosh, M.3    Hockenmaier, J.4
  • 107
    • 84959862537 scopus 로고    scopus 로고
    • Relation classification via convolutional deep neural network
    • Zeng, D., Liu, K., Lai, S., Zhou, G., & Zhao, J. (2014). Relation classification via convolutional deep neural network. In Proceedings of COLING (pp. 2335–2344).
    • (2014) In Proceedings of COLING , pp. 2335-2344
    • Zeng, D.1    Liu, K.2    Lai, S.3    Zhou, G.4    Zhao, J.5
  • 108
    • 80053360686 scopus 로고    scopus 로고
    • Tree kernel-based relation extraction with context-sensitive structured parse tree information
    • Zhou, G., Zhang, M., Ji, D. H., & Zhu, Q. (2007). Tree kernel-based relation extraction with context-sensitive structured parse tree information. In EMNLP-CoNLL 2007 (p. 728).
    • (2007) In EMNLP-CoNLL , vol.2007 , pp. 728
    • Zhou, G.1    Zhang, M.2    Ji, D.H.3    Zhu, Q.4
  • 109
    • 84865644621 scopus 로고    scopus 로고
    • In Proceedings of the 18th international conference on world wide web (pp. 101–110). ACM
    • Zhu, J., Nie, Z., Liu, X., Zhang, B., & Wen, J.-R
    • Zhu, J., Nie, Z., Liu, X., Zhang, B., & Wen, J.-R. (2009). Statsnowball: A statistical approach to extracting entity relationships. In Proceedings of the 18th international conference on world wide web (pp. 101–110). ACM.
    • (2009) Statsnowball: A statistical approach to extracting entity relationships
  • 112
    • 84887338442 scopus 로고    scopus 로고
    • In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3009–3016). IEEE
    • Zitnick, C. L., & Parikh, D
    • Zitnick, C. L., & Parikh, D. (2013). Bringing semantics into focus using visual abstraction. In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3009–3016). IEEE.
    • (2013) Bringing semantics into focus using visual abstraction


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.