-
1
-
-
1542285823
-
Lucas-Kanade 20 years on: A unifying framework
-
2, 3
-
S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004. 2, 3
-
(2004)
IJCV
-
-
Baker, S.1
Matthews, I.2
-
2
-
-
84880827668
-
3D shape regression for real-time facial animation
-
1
-
C. Cao, Y. Weng, S. Lin, and K. Zhou. 3D shape regression for real-time facial animation. ACM Transactions on Graphics, 32(4):41, 2013. 1
-
(2013)
ACM Transactions on Graphics
, vol.32
, Issue.4
, pp. 41
-
-
Cao, C.1
Weng, Y.2
Lin, S.3
Zhou, K.4
-
3
-
-
84897113834
-
Face alignment by explicit shape regression
-
2, 6
-
X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape regression. IJCV, 2014. 2, 6
-
(2014)
IJCV
-
-
Cao, X.1
Wei, Y.2
Wen, F.3
Sun, J.4
-
4
-
-
85035235556
-
CLKN: Cascaded lucas-kanade networks for image alignment
-
2, 3
-
C.-H. Chang, C.-N. Chou, and E. Y. Chang. CLKN: Cascaded lucas-kanade networks for image alignment. In CVPR, 2017. 2, 3
-
(2017)
CVPR
-
-
Chang, C.-H.1
Chou, C.-N.2
Chang, E.Y.3
-
5
-
-
84986244025
-
Personalizing human video pose estimation
-
3, 8
-
J. Charles, T. Pfister, D. Magee, D. Hogg, and A. Zisserman. Personalizing human video pose estimation. In CVPR, 2016. 3, 8
-
(2016)
CVPR
-
-
Charles, J.1
Pfister, T.2
Magee, D.3
Hogg, D.4
Zisserman, A.5
-
7
-
-
85035226122
-
More is less: A more complicated network with less inference complexity
-
5
-
X. Dong, J. Huang, Y. Yang, and S. Yan. More is less: A more complicated network with less inference complexity. In CVPR, 2017. 5
-
(2017)
CVPR
-
-
Dong, X.1
Huang, J.2
Yang, Y.3
Yan, S.4
-
8
-
-
85062867443
-
Style aggregated network for facial landmark detection
-
2, 6
-
X. Dong, Y. Yan, W. Ouyang, and Y. Yang. Style aggregated network for facial landmark detection. In CVPR, 2018. 2, 6
-
(2018)
CVPR
-
-
Dong, X.1
Yan, Y.2
Ouyang, W.3
Yang, Y.4
-
9
-
-
84986269170
-
Struck: Structured output tracking with kernels
-
2
-
S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks, and P. H. Torr. Struck: Structured output tracking with kernels. T-PAMI, 2016. 2
-
(2016)
T-PAMI
-
-
Hare, S.1
Golodetz, S.2
Saffari, A.3
Vineet, V.4
Cheng, M.-M.5
Hicks, S.L.6
Torr, P.H.7
-
10
-
-
84986274465
-
Deep residual learning for image recognition
-
5
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 5
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
78149481816
-
Forward-backward error: Automatic detection of tracking failures
-
2, 5
-
Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic detection of tracking failures. In ICPR, 2010. 2, 5
-
(2010)
ICPR
-
-
Kalal, Z.1
Mikolajczyk, K.2
Matas, J.3
-
13
-
-
85041904968
-
Synergy between face alignment and tracking via discriminative global consensus optimization
-
1, 2, 5, 6
-
M. H. Khan, J. McDonagh, and G. Tzimiropoulos. Synergy between face alignment and tracking via discriminative global consensus optimization. In ICCV, 2017. 1, 2, 5, 6
-
(2017)
ICCV
-
-
Khan, M.H.1
McDonagh, J.2
Tzimiropoulos, G.3
-
14
-
-
51949088884
-
Face tracking and recognition with visual constraints in real-world videos
-
5
-
M. Kim, S. Kumar, V. Pavlovic, and H. Rowley. Face tracking and recognition with visual constraints in real-world videos. In CVPR, 2008. 5
-
(2008)
CVPR
-
-
Kim, M.1
Kumar, S.2
Pavlovic, V.3
Rowley, H.4
-
15
-
-
84856655003
-
Annotated facial landmarks in the wild: A large-scale, realworld database for facial landmark localization
-
1, 5
-
M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof. Annotated facial landmarks in the wild: A large-scale, realworld database for facial landmark localization. In ICCV-W, 2011. 1, 5
-
(2011)
ICCV-W
-
-
Koestinger, M.1
Wohlhart, P.2
Roth, P.M.3
Bischof, H.4
-
16
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
2
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012. 2
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
85062889159
-
Two-stream transformer networks for video-based face alignment
-
2, 6
-
H. Liu, J. Lu, J. Feng, and J. Zhou. Two-stream transformer networks for video-based face alignment. T-PAMI, 2017. 2, 6
-
(2017)
T-PAMI
-
-
Liu, H.1
Lu, J.2
Feng, J.3
Zhou, J.4
-
18
-
-
0019647180
-
An iterative image registration technique with an application to stereo vision
-
2
-
B. D. Lucas, T. Kanade, et al. An iterative image registration technique with an application to stereo vision. In IJCAI, 1981. 2
-
(1981)
IJCAI
-
-
Lucas, B.D.1
Kanade, T.2
-
19
-
-
85030213048
-
A deep regression architecture with two-stage reinitialization for high performance facial landmark detection
-
1, 2, 4, 5, 6
-
J. Lv, X. Shao, J. Xing, C. Cheng, and X. Zhou. A deep regression architecture with two-stage reinitialization for high performance facial landmark detection. In CVPR, 2017. 1, 2, 4, 5, 6
-
(2017)
CVPR
-
-
Lv, J.1
Shao, X.2
Xing, J.3
Cheng, C.4
Zhou, X.5
-
20
-
-
84990062418
-
Stacked hourglass networks for human pose estimation
-
2, 4
-
A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In ECCV, 2016. 2, 4
-
(2016)
ECCV
-
-
Newell, A.1
Yang, K.2
Deng, J.3
-
21
-
-
85047343776
-
Automatic differentiation in PyTorch
-
6
-
A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS-W, 2017. 6
-
(2017)
NIPS-W
-
-
Paszke, A.1
Gross, S.2
Chintala, S.3
Chanan, G.4
Yang, E.5
De-Vito, Z.6
Lin, Z.7
Desmaison, A.8
Antiga, L.9
Lerer, A.10
-
22
-
-
85040145427
-
A recurrent encoder-decoder network for sequential face alignment
-
1, 2
-
X. Peng, R. S. Feris, X. Wang, and D. N. Metaxas. A recurrent encoder-decoder network for sequential face alignment. In ECCV, 2016. 1, 2
-
(2016)
ECCV
-
-
Peng, X.1
Feris, R.S.2
Wang, X.3
Metaxas, D.N.4
-
23
-
-
84973889176
-
PIEFA: Personalized incremental and ensemble face alignment
-
1, 3, 5, 6
-
X. Peng, S. Zhang, Y. Yang, and D. N. Metaxas. PIEFA: Personalized incremental and ensemble face alignment. In ICCV, 2015. 1, 3, 5, 6
-
(2015)
ICCV
-
-
Peng, X.1
Zhang, S.2
Yang, Y.3
Metaxas, D.N.4
-
24
-
-
85042259592
-
Toward personalized modeling: Incremental and ensemble alignment for sequential faces in the wild
-
3
-
X. Peng, S. Zhang, Y. Yu, and D. N. Metaxas. Toward personalized modeling: Incremental and ensemble alignment for sequential faces in the wild. IJCV, 2017. 3
-
(2017)
IJCV
-
-
Peng, X.1
Zhang, S.2
Yu, Y.3
Metaxas, D.N.4
-
25
-
-
84911442924
-
Face alignment at 3000 fps via regressing local binary features
-
6
-
S. Ren, X. Cao, Y. Wei, and J. Sun. Face alignment at 3000 fps via regressing local binary features. In CVPR, 2014. 6
-
(2014)
CVPR
-
-
Ren, S.1
Cao, X.2
Wei, Y.3
Sun, J.4
-
26
-
-
84962003019
-
300 faces in-The-wild challenge: Database and results
-
6
-
C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. 300 faces in-The-wild challenge: Database and results. Image and Vision Computing, 47:3-18, 2016. 6
-
(2016)
Image and Vision Computing
, vol.47
, pp. 3-18
-
-
Sagonas, C.1
Antonakos, E.2
Tzimiropoulos, G.3
Zafeiriou, S.4
Pantic, M.5
-
27
-
-
84911438905
-
RAPS: Robust and efficient automatic construction of person-specific deformable models
-
3
-
C. Sagonas, Y. Panagakis, S. Zafeiriou, and M. Pantic. RAPS: Robust and efficient automatic construction of person-specific deformable models. In CVPR, 2014. 3
-
(2014)
CVPR
-
-
Sagonas, C.1
Panagakis, Y.2
Zafeiriou, S.3
Pantic, M.4
-
28
-
-
84897520980
-
300 faces in-The-wild challenge: The first facial landmark localization challenge
-
1, 5, 6
-
C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. 300 faces in-The-wild challenge: The first facial landmark localization challenge. In ICCV-W, 2013. 1, 5, 6
-
(2013)
ICCV-W
-
-
Sagonas, C.1
Tzimiropoulos, G.2
Zafeiriou, S.3
Pantic, M.4
-
29
-
-
85026929789
-
Unsupervised video adaptation for parsing human motion
-
3, 8
-
H. Shen, S.-I. Yu, Y. Yang, D. Meng, and A. Hauptmann. Unsupervised video adaptation for parsing human motion. In ECCV, 2014. 3, 8
-
(2014)
ECCV
-
-
Shen, H.1
Yu, S.-I.2
Yang, Y.3
Meng, D.4
Hauptmann, A.5
-
30
-
-
84962039851
-
The first facial landmark tracking in-The-wild challenge: Benchmark and results
-
5
-
J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tzimiropoulos, and M. Pantic. The first facial landmark tracking in-The-wild challenge: Benchmark and results. In ICCVW, 2015. 5
-
(2015)
ICCVW
-
-
Shen, J.1
Zafeiriou, S.2
Chrysos, G.G.3
Kossaifi, J.4
Tzimiropoulos, G.5
Pantic, M.6
-
31
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
5
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 5
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
32
-
-
84986308411
-
Face2Face: Real-time face capture and reenactment of RGB videos
-
1
-
J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Niebner. Face2Face: Real-time face capture and reenactment of RGB videos. In CVPR, 2016. 1
-
(2016)
CVPR
-
-
Thies, J.1
Zollhofer, M.2
Stamminger, M.3
Theobalt, C.4
Niebner, M.5
-
33
-
-
84986309468
-
Mnemonic descent method: A recurrent process applied for end-to-end face alignment
-
6
-
G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, and S. Zafeiriou. Mnemonic descent method: A recurrent process applied for end-to-end face alignment. In CVPR, 2016. 6
-
(2016)
CVPR
-
-
Trigeorgis, G.1
Snape, P.2
Nicolaou, M.A.3
Antonakos, E.4
Zafeiriou, S.5
-
34
-
-
84957999859
-
Project-out cascaded regression with an application to face alignment
-
5
-
G. Tzimiropoulos. Project-out cascaded regression with an application to face alignment. In CVPR, 2015. 5
-
(2015)
CVPR
-
-
Tzimiropoulos, G.1
-
35
-
-
85009920674
-
Convolutional pose machines
-
4, 5
-
S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. In CVPR, 2016. 4, 5
-
(2016)
CVPR
-
-
Wei, S.-E.1
Ramakrishna, V.2
Kanade, T.3
Sheikh, Y.4
-
36
-
-
80052899838
-
Face recognition in unconstrained videos with matched background similarity
-
5
-
L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained videos with matched background similarity. In CVPR, 2011. 5
-
(2011)
CVPR
-
-
Wolf, L.1
Hassner, T.2
Maoz, I.3
-
37
-
-
84887383859
-
Supervised descent method and its applications to face alignment
-
1, 2, 6
-
X. Xiong and F. De la Torre. Supervised descent method and its applications to face alignment. In CVPR, 2013. 1, 2, 6
-
(2013)
CVPR
-
-
Xiong, X.1
De La Torre, F.2
-
38
-
-
85009935878
-
Facial landmark detection by deep multi-task learning
-
2, 6
-
Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep multi-task learning. In ECCV, 2014. 2, 6
-
(2014)
ECCV
-
-
Zhang, Z.1
Luo, P.2
Loy, C.C.3
Tang, X.4
-
39
-
-
84959182922
-
Face alignment by coarse-to-fine shape searching
-
5, 6
-
S. Zhu, C. Li, C. Change Loy, and X. Tang. Face alignment by coarse-to-fine shape searching. In CVPR, 2015. 5, 6
-
(2015)
CVPR
-
-
Zhu, S.1
Li, C.2
Loy, C.C.3
Tang, X.4
-
40
-
-
84986243881
-
Unconstrained face alignment via cascaded compositional learning
-
4, 5
-
S. Zhu, C. Li, C.-C. Loy, and X. Tang. Unconstrained face alignment via cascaded compositional learning. In CVPR, 2016. 4, 5
-
(2016)
CVPR
-
-
Zhu, S.1
Li, C.2
Loy, C.-C.3
Tang, X.4
-
41
-
-
84876838667
-
Semi-supervised learning tutorial
-
3
-
X. Zhu. Semi-supervised learning tutorial. In ICML, 2007. 3
-
(2007)
ICML
-
-
Zhu, X.1
|