메뉴 건너뛰기




Volumn , Issue , 2017, Pages 279-287

A dual-network progressive approach to weakly supervised object detection

Author keywords

Dual network; Progressive; Weakly supervised object detection

Indexed keywords

ITERATIVE METHODS; OBJECT RECOGNITION;

EID: 85035243254     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3123266.3123455     Document Type: Conference Paper
Times cited : (50)

References (52)
  • 1
    • 33750738734 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • Maria-Florina Balcan, Avrim Blum, and Ke Yang. 2004. Co-training and expansion: Towards bridging theory and practice. In NIPS.
    • (2004) NIPS
    • Balcan, M.-F.1    Blum, A.2    Yang, K.3
  • 2
    • 84977675045 scopus 로고    scopus 로고
    • Self-taught object localization with deep networks
    • Loris Bazzani, Alessandra Bergamo, Dragomir Anguelov, and Lorenzo Torresani. 2016. Self-taught object localization with deep networks. In WACV.
    • (2016) WACV
    • Bazzani, L.1    Bergamo, A.2    Anguelov, D.3    Torresani, L.4
  • 4
    • 84919725433 scopus 로고    scopus 로고
    • Weakly supervised object detection with posterior regularization
    • Hakan Bilen, Marco Pedersoli, and Tinne Tuytelaars. 2014. Weakly supervised object detection with posterior regularization. In BMVC.
    • (2014) BMVC
    • Bilen, H.1    Pedersoli, M.2    Tuytelaars, T.3
  • 5
    • 84959226265 scopus 로고    scopus 로고
    • Weakly supervised object detection with convex clustering
    • Hakan Bilen, Marco Pedersoli, and Tinne Tuytelaars. 2015. Weakly supervised object detection with convex clustering. In CVPR.
    • (2015) CVPR
    • Bilen, H.1    Pedersoli, M.2    Tuytelaars, T.3
  • 6
    • 84986269551 scopus 로고    scopus 로고
    • Weakly supervised deep detection networks
    • H. Bilen and A. Vedaldi. 2016. Weakly supervised deep detection networks. In CVPR.
    • (2016) CVPR
    • Bilen, H.1    Vedaldi, A.2
  • 8
    • 84911376072 scopus 로고    scopus 로고
    • Multi-fold MIL training for weakly supervised object localization
    • Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid. 2014. Multi-fold MIL training for weakly supervised object localization. In CVPR.
    • (2014) CVPR
    • Cinbis, R.G.1    Verbeek, J.2    Schmid, C.3
  • 9
    • 85018938177 scopus 로고    scopus 로고
    • R-FCN: Object detection via region-based fully convolutional networks
    • Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. 2016. R-FCN: object detection via region-based fully convolutional networks. In NIPS.
    • (2016) NIPS
    • Dai, J.1    Li, Y.2    He, K.3    Sun, J.4
  • 10
    • 79959728283 scopus 로고    scopus 로고
    • Localizing objects while learning their appearance
    • Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari. 2010. Localizing objects while learning their appearance. In ECCV.
    • (2010) ECCV
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 11
    • 84867062047 scopus 로고    scopus 로고
    • Weakly supervised localization and learning with generic knowledge
    • (2012)
    • Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari. 2012. Weakly supervised localization and learning with generic knowledge. International journal of computer vision 100, 3 (2012), 275-293.
    • (2012) International Journal of Computer Vision , vol.100 , Issue.3 , pp. 275-293
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 13
    • 85035226122 scopus 로고    scopus 로고
    • More is less: A more complicated network with less inference complexity
    • Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. 2017. More is Less: A More Complicated Network with Less Inference Complexity. In CVPR.
    • (2017) CVPR
    • Dong, X.1    Huang, J.2    Yang, Y.3    Yan, S.4
  • 16
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • Ross Girshick. 2015. Fast R-CNN. In ICCV
    • (2015) ICCV
    • Girshick, R.1
  • 17
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In CVPR.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 19
    • 33745173515 scopus 로고    scopus 로고
    • Online detection and classification of moving objects using progressively improving detectors
    • Omar Javed, Saad Ali, and Mubarak Shah. 2005. Online detection and classification of moving objects using progressively improving detectors. In CVPR.
    • (2005) CVPR
    • Javed, O.1    Ali, S.2    Shah, M.3
  • 20
    • 84960132462 scopus 로고    scopus 로고
    • Easy samples first: Self-paced reranking for zero-example multimedia search
    • Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Hauptmann. 2014. Easy Samples First: Self-paced Reranking for Zero-Example Multimedia Search. In ACM MM.
    • (2014) ACM MM
    • Jiang, L.1    Meng, D.2    Mitamura, T.3    Hauptmann, A.G.4
  • 21
    • 85040949959 scopus 로고    scopus 로고
    • Deep self-taught learning for weakly supervised object localization
    • Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, and Wei Liu. 2017. Deep self-taught learning for weakly supervised object localization. In CVPR.
    • (2017) CVPR
    • Jie, Z.1    Wei, Y.2    Jin, X.3    Feng, J.4    Liu, W.5
  • 22
    • 85035241220 scopus 로고    scopus 로고
    • Weakly-supervised multi-class object detection using multi-type 3D features
    • Asako Kanezaki, Yasuo Kuniyoshi, and Tatsuya Harada. 2013. Weakly-supervised multi-class object detection using multi-type 3D features. In ACM MM.
    • (2013) ACM MM
    • Kanezaki, A.1    Kuniyoshi, Y.2    Harada, T.3
  • 23
    • 85021823117 scopus 로고    scopus 로고
    • Context-locnet: Context-aware deep network models for weakly supervised localization
    • Vadim Kantorov, Maxime Oquab, Minsu Cho, and Ivan Laptev. 2016. Context-LocNet: Context-aware deep network models for weakly supervised localization. In ECCV.
    • (2016) ECCV
    • Kantorov, V.1    Oquab, M.2    Cho, M.3    Laptev, I.4
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet classification with deep convolutional neural networks. In NIPS.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • M Pawan Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-paced learning for latent variable models. In NIPS.
    • (2010) NIPS
    • Pawan Kumar, M.1    Packer, B.2    Koller, D.3
  • 26
    • 0344982834 scopus 로고    scopus 로고
    • Unsupervised improvement of visual detectors using cotraining
    • Anat Levin, Paul Viola, and Yoav Freund. 2003. Unsupervised improvement of visual detectors using cotraining. In ICCV.
    • (2003) ICCV
    • Levin, A.1    Viola, P.2    Freund, Y.3
  • 27
    • 84986317248 scopus 로고    scopus 로고
    • Weakly supervised object localization with progressive domain adaptation
    • Dong Li, Jia-Bin Huang, Yali Li, Shengjin Wang, and Ming-Hsuan Yang. 2016. Weakly Supervised Object Localization with Progressive Domain Adaptation. In CVPR.
    • (2016) CVPR
    • Li, D.1    Huang, J.-B.2    Li, Y.3    Wang, S.4    Yang, M.-H.5
  • 29
    • 85020810893 scopus 로고    scopus 로고
    • A theoretical understanding of self-paced learning
    • (2017)
    • De-yu Meng, Qian Zhao, and Lu Jiang. 2017. A Theoretical Understanding of Self-paced Learning. Information Sciences 414, 11 (2017), 319-328.
    • (2017) Information Sciences , vol.414 , Issue.11 , pp. 319-328
    • Meng, D.-Y.1    Zhao, Q.2    Jiang, L.3
  • 30
    • 85035220844 scopus 로고    scopus 로고
    • Weakly-supervised recognition, localization, and explanation of visual entities
    • Pascal Mettes. 2016. Weakly-supervised recognition, localization, and explanation of visual entities. In ACM MM.
    • (2016) ACM MM
    • Mettes, P.1
  • 31
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free? Weakly-supervised learning with convolutional neural networks
    • Maxime Oquab, León Bottou, Ivan Laptev, and Josef Sivic. 2015. Is object localization for free? Weakly-supervised learning with convolutional neural networks. In CVPR.
    • (2015) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 32
    • 84919730581 scopus 로고    scopus 로고
    • Weakly supervised object recognition with convolutional neural networks
    • Maxime Oquab, León Bottou, Ivan Laptev, Josef Sivic, et al. 2014. Weakly supervised object recognition with convolutional neural networks. In NIPS.
    • (2014) NIPS
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 33
    • 84986308404 scopus 로고    scopus 로고
    • You only look once: Unified, real-time object detection
    • Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object detection. In CVPR.
    • (2016) CVPR
    • Redmon, J.1    Divvala, S.2    Girshick, R.3    Farhadi, A.4
  • 34
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 35
    • 85035207411 scopus 로고    scopus 로고
    • Weakly supervised object localization using size estimates
    • Miaojing Shi and Vittorio Ferrari. 2016. Weakly supervised object localization using size estimates. In ECCV.
    • (2016) ECCV
    • Shi, M.1    Ferrari, V.2
  • 36
    • 84986317469 scopus 로고    scopus 로고
    • Training region-based object detectors with online hard example mining
    • Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. 2016. Training region-based object detectors with online hard example mining. In CVPR.
    • (2016) CVPR
    • Shrivastava, A.1    Gupta, A.2    Girshick, R.3
  • 37
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In ICLR.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 38
    • 84888335371 scopus 로고    scopus 로고
    • In defence of negative mining for annotating weakly labelled data
    • Parthipan Siva, Chris Russell, and Tao Xiang. 2012. In defence of negative mining for annotating weakly labelled data. In ECCV.
    • (2012) ECCV
    • Siva, P.1    Russell, C.2    Xiang, T.3
  • 39
    • 84887368488 scopus 로고    scopus 로고
    • Looking beyond the image: Unsupervised learning for object saliency and detection
    • Parthipan Siva, Chris Russell, Tao Xiang, and Lourdes Agapito. 2013. Looking beyond the image: Unsupervised learning for object saliency and detection. In CVPR.
    • (2013) CVPR
    • Siva, P.1    Russell, C.2    Xiang, T.3    Agapito, L.4
  • 40
    • 84856651319 scopus 로고    scopus 로고
    • Weakly supervised object detector learning with model drift detection
    • Parthipan Siva and Tao Xiang. 2011. Weakly supervised object detector learning with model drift detection. In ICCV.
    • (2011) ICCV
    • Siva, P.1    Xiang, T.2
  • 42
    • 84937853706 scopus 로고    scopus 로고
    • Weakly-supervised discovery of visual pattern configurations
    • Hyun Oh Song, Yong Jae Lee, Stefanie Jegelka, and Trevor Darrell. 2014. Weakly-supervised discovery of visual pattern configurations. In NIPS.
    • (2014) NIPS
    • Song, H.O.1    Lee, Y.J.2    Jegelka, S.3    Darrell, T.4
  • 43
    • 84887368146 scopus 로고    scopus 로고
    • Self-paced learning for long-term tracking
    • James S Supancic and Deva Ramanan. 2013. Self-paced learning for long-term tracking. In CVPR.
    • (2013) CVPR
    • Supancic, J.S.1    Ramanan, D.2
  • 44
    • 84986296808 scopus 로고    scopus 로고
    • Rethinking the inception architecture for computer vision
    • Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception architecture for computer vision. In CVPR.
    • (2016) CVPR
    • Szegedy, C.1    Vanhoucke, V.2    Ioffe, S.3    Shlens, J.4    Wojna, Z.5
  • 46
    • 84956604127 scopus 로고    scopus 로고
    • Weakly supervised object localization with latent category learning
    • Chong Wang, Weiqiang Ren, Kaiqi Huang, and Tieniu Tan. 2014. Weakly supervised object localization with latent category learning. In ECCV.
    • (2014) ECCV
    • Wang, C.1    Ren, W.2    Huang, K.3    Tan, T.4
  • 47
    • 77956506015 scopus 로고    scopus 로고
    • A new analysis of co-training
    • Wei Wang and Zhi-Hua Zhou. 2010. A new analysis of co-training. In ICML.
    • (2010) ICML
    • Wang, W.1    Zhou, Z.-H.2
  • 48
    • 85043777453 scopus 로고    scopus 로고
    • Aggregated residual transformations for deep neural networks
    • Saining Xie, Ross Girshick, Piotr Dollr, Zhuowen Tu, and Kaiming He. 2017. Aggregated Residual Transformations for Deep Neural Networks. CVPR.
    • (2017) CVPR
    • Xie, S.1    Girshick, R.2    Dollr, P.3    Tu, Z.4    He, K.5
  • 49
    • 84897584116 scopus 로고    scopus 로고
    • Feature selection for multimedia analysis by sharing information among multiple tasks
    • (2013)
    • Yi Yang, Zhigang Ma, Alexander G Hauptmann, and Nicu Sebe. 2013. Feature selection for multimedia analysis by sharing information among multiple tasks. IEEE Transactions on Multimedia 15, 3 (2013), 661-669.
    • (2013) IEEE Transactions on Multimedia , vol.15 , Issue.3 , pp. 661-669
    • Yang, Y.1    Ma, Z.2    Hauptmann, A.G.3    Sebe, N.4
  • 50
    • 85027709720 scopus 로고    scopus 로고
    • UnitBox: An advanced object detection network
    • Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and Thomas Huang. 2016. UnitBox: An advanced object detection network. In ACM MM.
    • (2016) ACM MM
    • Yu, J.1    Jiang, Y.2    Wang, Z.3    Cao, Z.4    Huang, T.5
  • 51
    • 85006136405 scopus 로고    scopus 로고
    • Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning
    • Dingwen Zhang, Deyu Meng, Long Zhao, and Junwei Han. 2016. Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning. In IJCAI.
    • (2016) IJCAI
    • Zhang, D.1    Meng, D.2    Zhao, L.3    Han, J.4
  • 52
    • 84939234928 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C Lawrence Zitnick and Piotr Dollar. 2014. Edge boxes: locating object proposals from edges. In ECCV.
    • (2014) ECCV
    • Lawrence Zitnick, C.1    Dollar, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.