메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 30-38

Image question answering using convolutional neural network with dynamic parameter prediction

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; BENCHMARKING; COMPUTER VISION; CONVOLUTION; FORECASTING; HASH FUNCTIONS; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84986261711     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.11     Document Type: Conference Paper
Times cited : (359)

References (31)
  • 2
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • 2
    • J. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, 2015.
    • (2015) ICCV
    • Ba, J.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 4
    • 84939821078 scopus 로고    scopus 로고
    • Empirical evaluation of gated recurrent neural networks on sequence modeling
    • 4, 5, 7
    • J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. In NIPS Deep Learning Workshop, 2014.
    • (2014) NIPS Deep Learning Workshop
    • Chung, J.1    Gulcehre, C.2    Cho, K.3    Bengio, Y.4
  • 10
    • 84965148420 scopus 로고    scopus 로고
    • Are you talking to a machine dataset and methods for multilingual image question answering
    • 1, 2
    • H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu. Are you talking to a machine dataset and methods for multilingual image question answering. In NIPS, 2015.
    • (2015) NIPS
    • Gao, H.1    Mao, J.2    Zhou, J.3    Huang, Z.4    Wang, L.5    Xu, W.6
  • 12
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • 6
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 13
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • 6
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 16
    • 85007153677 scopus 로고    scopus 로고
    • Learning to answer questions from image using convolutional neural network
    • 1, 2, 3, 7
    • L. Ma, Z. Lu, and H. Li. Learning to answer questions from image using convolutional neural network. In AAAI, 2016.
    • (2016) AAAI
    • Ma, L.1    Lu, Z.2    Li, H.3
  • 17
    • 84937822746 scopus 로고    scopus 로고
    • A multi-world approach to question answering about real-world scenes based on uncertain input
    • 1, 2, 6, 7
    • M. Malinowski and M. Fritz. A multi-world approach to question answering about real-world scenes based on uncertain input. In NIPS, 2014.
    • (2014) NIPS
    • Malinowski, M.1    Fritz, M.2
  • 18
    • 84973896625 scopus 로고    scopus 로고
    • Ask your neurons: A neural-based approach to answering questions about images
    • 1, 2, 7
    • M. Malinowski, M. Rohrbach, and M. Fritz. Ask your neurons: A neural-based approach to answering questions about images. In ICCV, 2015.
    • (2015) ICCV
    • Malinowski, M.1    Rohrbach, M.2    Fritz, M.3
  • 20
    • 84886073305 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images
    • 6
    • P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
    • (2012) ECCV
    • Nathan Silberman, P.K.1    Hoiem, D.2    Fergus, R.3
  • 21
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • 1
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 22
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • 6
    • R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In ICML, 2013.
    • (2013) ICML
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 23
    • 84965170394 scopus 로고    scopus 로고
    • Exploring models and data for image question answering
    • 1, 2, 3, 5, 6, 7
    • M. Ren, R. Kiros, and R. S. Zemel. Exploring models and data for image question answering. In NIPS, 2015.
    • (2015) NIPS
    • Ren, M.1    Kiros, R.2    Zemel, R.S.3
  • 24
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 1, 3
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 25
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • 5
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 27
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • 1
    • L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Wolf, L.1
  • 28
    • 85146676791 scopus 로고
    • Verbs semantics and lexical selection
    • 6
    • Z. Wu and M. Palmer. Verbs semantics and lexical selection. In ACL, 1994.
    • (1994) ACL
    • Wu, Z.1    Palmer, M.2
  • 30
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • 1
    • J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR, 2012.
    • (2012) CVPR
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 31
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • 1
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.