-
1
-
-
84882967018
-
Biological mechanisms that promote weight regain following weight loss in obese humans
-
COI: 1:CAS:528:DC%2BC3sXhsF2gtL%2FP
-
Ochner, C. N., Barrios, D. M., Lee, C. D. & Pi-Sunyer, F. X. Biological mechanisms that promote weight regain following weight loss in obese humans. Physiol. Behav. 120, 106–113 (2013).
-
(2013)
Physiol. Behav.
, vol.120
, pp. 106-113
-
-
Ochner, C.N.1
Barrios, D.M.2
Lee, C.D.3
Pi-Sunyer, F.X.4
-
2
-
-
84949631415
-
Biologic responses to weight loss and weight regain: report from an American Diabetes Association Research Symposium
-
COI: 1:CAS:528:DC%2BC2MXhtFyns77M
-
Leibel, R. L. et al. Biologic responses to weight loss and weight regain: report from an American Diabetes Association Research Symposium. Diabetes 64, 2299–2309 (2015).
-
(2015)
Diabetes
, vol.64
, pp. 2299-2309
-
-
Leibel, R.L.1
-
3
-
-
84866108680
-
Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons
-
COI: 1:CAS:528:DC%2BC38XhtFCrtrvL
-
Dietrich, M. O. & Horvath, T. L. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat. Rev. Drug. Discov. 11, 675–691 (2012).
-
(2012)
Nat. Rev. Drug. Discov.
, vol.11
, pp. 675-691
-
-
Dietrich, M.O.1
Horvath, T.L.2
-
4
-
-
77956241193
-
Agrp neurons mediate Sirt1’s action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity
-
COI: 1:CAS:528:DC%2BC3cXhtFerurbN
-
Dietrich, M. O. et al. Agrp neurons mediate Sirt1’s action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J. Neurosci.: Off. J. Soc. Neurosci. 30, 11815–11825 (2010).
-
(2010)
J. Neurosci.: Off. J. Soc. Neurosci.
, vol.30
, pp. 11815-11825
-
-
Dietrich, M.O.1
-
5
-
-
33646582664
-
Hypothalamic mTOR signaling regulates food intake
-
COI: 1:CAS:528:DC%2BD28Xktlyhs7Y%3D
-
Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006).
-
(2006)
Science
, vol.312
, pp. 927-930
-
-
Cota, D.1
-
6
-
-
1842484296
-
AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus
-
COI: 1:CAS:528:DC%2BD2cXis1Gks7k%3D
-
Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).
-
(2004)
Nature
, vol.428
, pp. 569-574
-
-
Minokoshi, Y.1
-
7
-
-
85021113752
-
Leptin's Physiologic Role: Does the Emperor of Energy Balance Have No Clothes?
-
COI: 1:CAS:528:DC%2BC2sXhtVOjtr3P
-
Flier, J. S. & Maratos-Flier, E. Leptin’s physiologic role: does the emperor of energy balance have no clothes? Cell Metab. 26, 24–26 (2017).
-
(2017)
Cell Metabolism
, vol.26
, Issue.1
, pp. 24-26
-
-
Flier, J.S.1
Maratos-Flier, E.2
-
8
-
-
17844388556
-
Endocannabinoid control of food intake and energy balance
-
Di Marzo, V. & Matias, I. Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8, 585–589 (2005).
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 585-589
-
-
Di Marzo, V.1
Matias, I.2
-
9
-
-
0035848818
-
Leptin-regulated endocannabinoids are involved in maintaining food intake
-
Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).
-
(2001)
Nature
, vol.410
, pp. 822-825
-
-
Di Marzo, V.1
-
10
-
-
77956037652
-
A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents
-
COI: 1:CAS:528:DC%2BC3cXht1Kju73F
-
Cluny, N. L. et al. A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br. J. Pharmacol. 161, 629–642 (2010).
-
(2010)
Br. J. Pharmacol.
, vol.161
, pp. 629-642
-
-
Cluny, N.L.1
-
11
-
-
77955286305
-
Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity
-
COI: 1:CAS:528:DC%2BC3cXhtVaiurzM
-
Tam, J. et al. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J. Clin. Invest. 120, 2953–2966 (2010).
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2953-2966
-
-
Tam, J.1
-
12
-
-
25844460609
-
Activation of the peripheral endocannabinoid system in human obesity
-
COI: 1:CAS:528:DC%2BD2MXhtV2rs77O
-
Engeli, S. et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 54, 2838–2843 (2005).
-
(2005)
Diabetes
, vol.54
, pp. 2838-2843
-
-
Engeli, S.1
-
13
-
-
84888091333
-
Monounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide hydrolase
-
COI: 1:CAS:528:DC%2BC3sXhvFCis7rN
-
Liu, J. et al. Monounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA 110, 18832–18837 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 18832-18837
-
-
Liu, J.1
-
14
-
-
34247583996
-
Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins
-
COI: 1:CAS:528:DC%2BD2sXksFersr4%3D
-
Hart, G. W., Housley, M. P. & Slawson, C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).
-
(2007)
Nature
, vol.446
, pp. 1017-1022
-
-
Hart, G.W.1
Housley, M.P.2
Slawson, C.3
-
15
-
-
85019166862
-
Protein O-GlcNAcylation: emerging mechanisms and functions
-
COI: 1:CAS:528:DC%2BC2sXnsV2mtbs%3D
-
Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452–465 (2017).
-
(2017)
Nat. Rev. Mol. Cell Biol.
, vol.18
, pp. 452-465
-
-
Yang, X.1
Qian, K.2
-
16
-
-
84878235671
-
Cracking the O-GlcNAc code in metabolism
-
COI: 1:CAS:528:DC%2BC3sXnt1amsLo%3D
-
Ruan, H. B., Singh, J. P., Li, M. D., Wu, J. & Yang, X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol. Metab. 24, 301–309 (2013).
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 301-309
-
-
Ruan, H.B.1
Singh, J.P.2
Li, M.D.3
Wu, J.4
Yang, X.5
-
17
-
-
84880648662
-
O-GlcNAc cycling: a link between metabolism and chronic disease
-
COI: 1:CAS:528:DC%2BC3sXhsVSqtLvF
-
Bond, M. R. & Hanover, J. A. O-GlcNAc cycling: a link between metabolism and chronic disease. Annu. Rev. Nutr. 33, 205–229 (2013).
-
(2013)
Annu. Rev. Nutr.
, vol.33
, pp. 205-229
-
-
Bond, M.R.1
Hanover, J.A.2
-
18
-
-
0032543680
-
A nutrient-sensing pathway regulates leptin gene expression in muscle and fat
-
COI: 1:STN:280:DyaK1czgtlersg%3D%3D
-
Wang, J., Liu, R., Hawkins, M., Barzilai, N. & Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684–688 (1998).
-
(1998)
Nature
, vol.393
, pp. 684-688
-
-
Wang, J.1
Liu, R.2
Hawkins, M.3
Barzilai, N.4
Rossetti, L.5
-
19
-
-
0036679303
-
Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia
-
COI: 1:CAS:528:DC%2BD38Xmt1Chtro%3D
-
McClain, D. A. et al. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc. Natl Acad. Sci. USA 99, 10695–10699 (2002).
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 10695-10699
-
-
McClain, D.A.1
-
20
-
-
33845864967
-
Adipocytes as regulators of energy balance and glucose homeostasis
-
COI: 1:CAS:528:DC%2BD28XhtlShtrzI
-
Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006).
-
(2006)
Nature
, vol.444
, pp. 847-853
-
-
Rosen, E.D.1
Spiegelman, B.M.2
-
21
-
-
78049311283
-
Obesity and leptin resistance: distinguishing cause from effect
-
COI: 1:CAS:528:DC%2BC3cXhtlKltL7L
-
Myers, M. G. Jr., Leibel, R. L., Seeley, R. J. & Schwartz, M. W. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol. Metab. 21, 643–651 (2010).
-
(2010)
Trends Endocrinol. Metab.
, vol.21
, pp. 643-651
-
-
Myers, M.G.1
Leibel, R.L.2
Seeley, R.J.3
Schwartz, M.W.4
-
22
-
-
77950543816
-
Diacylglycerol-mediated insulin resistance
-
COI: 1:CAS:528:DC%2BC3cXktlyntLg%3D
-
Erion, D. M. & Shulman, G. I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).
-
(2010)
Nat. Med.
, vol.16
, pp. 400-402
-
-
Erion, D.M.1
Shulman, G.I.2
-
23
-
-
84958121188
-
Loss of adipose fatty acid oxidation does not potentiate obesity at thermoneutrality
-
COI: 1:CAS:528:DC%2BC28Xit1Wmu7w%3D
-
Lee, J., Choi, J., Aja, S., Scafidi, S. & Wolfgang, M. J. Loss of adipose fatty acid oxidation does not potentiate obesity at thermoneutrality. Cell Rep. 14, 1308–1316 (2016).
-
(2016)
Cell Rep.
, vol.14
, pp. 1308-1316
-
-
Lee, J.1
Choi, J.2
Aja, S.3
Scafidi, S.4
Wolfgang, M.J.5
-
24
-
-
84920948052
-
Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation
-
COI: 1:CAS:528:DC%2BC2MXntV2ktw%3D%3D
-
Lee, J., Ellis, J. M. & Wolfgang, M. J. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep. 10, 266–279 (2015).
-
(2015)
Cell Rep.
, vol.10
, pp. 266-279
-
-
Lee, J.1
Ellis, J.M.2
Wolfgang, M.J.3
-
25
-
-
76049086229
-
PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization
-
COI: 1:CAS:528:DC%2BC3cXmsVenuw%3D%3D
-
Sugii, S. et al. PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc. Natl Acad. Sci. USA 106, 22504–22509 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 22504-22509
-
-
Sugii, S.1
-
26
-
-
20944444283
-
Rosiglitazone increases indexes of stearoyl-CoA desaturase activity in humans: link to insulin sensitization and the role of dominant-negative mutation in peroxisome proliferator-activated receptor-gamma
-
COI: 1:CAS:528:DC%2BD2MXktVCks7c%3D
-
Riserus, U. et al. Rosiglitazone increases indexes of stearoyl-CoA desaturase activity in humans: link to insulin sensitization and the role of dominant-negative mutation in peroxisome proliferator-activated receptor-gamma. Diabetes 54, 1379–1384 (2005).
-
(2005)
Diabetes
, vol.54
, pp. 1379-1384
-
-
Riserus, U.1
-
27
-
-
84888023638
-
Peroxisome proliferator-activated receptor-gamma stimulates the synthesis of monounsaturated fatty acids in dairy goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase
-
COI: 1:CAS:528:DC%2BC3sXhs1Whtr7M
-
Shi, H. B. et al. Peroxisome proliferator-activated receptor-gamma stimulates the synthesis of monounsaturated fatty acids in dairy goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase. J. Dairy Sci. 96, 7844–7853 (2013).
-
(2013)
J. Dairy Sci.
, vol.96
, pp. 7844-7853
-
-
Shi, H.B.1
-
28
-
-
84877329207
-
PPARgamma signaling and metabolism: the good, the bad and the future
-
COI: 1:CAS:528:DC%2BC3sXntF2kurs%3D
-
Ahmadian, M. et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).
-
(2013)
Nat. Med.
, vol.19
, pp. 557-566
-
-
Ahmadian, M.1
-
29
-
-
84862777029
-
O-GlcNAc modification of PPARgamma reduces its transcriptional activity
-
COI: 1:CAS:528:DC%2BC38Xhs1Gjt7k%3D
-
Ji, S., Park, S. Y., Roth, J., Kim, H. S. & Cho, J. W. O-GlcNAc modification of PPARgamma reduces its transcriptional activity. Biochem. Biophys. Res. Commun. 417, 1158–1163 (2012).
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.417
, pp. 1158-1163
-
-
Ji, S.1
Park, S.Y.2
Roth, J.3
Kim, H.S.4
Cho, J.W.5
-
30
-
-
78651292715
-
Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes
-
COI: 1:CAS:528:DC%2BC3cXhsFGgtLfP
-
Mozaffarian, D. et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr. 92, 1350–1358 (2010).
-
(2010)
Am. J. Clin. Nutr.
, vol.92
, pp. 1350-1358
-
-
Mozaffarian, D.1
-
31
-
-
51549107903
-
Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism
-
COI: 1:CAS:528:DC%2BD1cXht1Sns73K
-
Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).
-
(2008)
Cell
, vol.134
, pp. 933-944
-
-
Cao, H.1
-
32
-
-
84957975315
-
FGF21 Mediates endocrine control of simple sugar intake and sweet taste preference by the liver
-
von Holstein-Rathlou, S. et al. FGF21 Mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell. Metab. 23, 335–343 (2016).
-
(2016)
Cell. Metab.
, vol.23
, pp. 335-343
-
-
von Holstein-Rathlou, S.1
-
33
-
-
84957949211
-
FGF21 regulates sweet and alcohol preference
-
COI: 1:CAS:528:DC%2BC2MXitV2msrjL
-
Talukdar, S. et al. FGF21 regulates sweet and alcohol preference. Cell. Metab. 23, 344–349 (2016).
-
(2016)
Cell. Metab.
, vol.23
, pp. 344-349
-
-
Talukdar, S.1
-
34
-
-
84863798353
-
Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity
-
COI: 1:CAS:528:DC%2BC38XhtFSqtLjL
-
Flowers, M. T., Ade, L., Strable, M. S. & Ntambi, J. M. Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity. J. Lipid Res. 53, 1646–1653 (2012).
-
(2012)
J. Lipid Res.
, vol.53
, pp. 1646-1653
-
-
Flowers, M.T.1
Ade, L.2
Strable, M.S.3
Ntambi, J.M.4
-
35
-
-
67749111842
-
Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high fat diet-induced obesity
-
COI: 1:CAS:528:DC%2BD1MXos1egu7k%3D
-
Sampath, H. et al. Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high fat diet-induced obesity. J. Biol. Chem. 284, 19961–19973 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 19961-19973
-
-
Sampath, H.1
-
36
-
-
0037143752
-
Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity
-
COI: 1:CAS:528:DC%2BD38XmslSls74%3D
-
Ntambi, J. M. et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc. Natl Acad. Sci. USA 99, 11482–11486 (2002).
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 11482-11486
-
-
Ntambi, J.M.1
-
37
-
-
0037067570
-
Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss
-
COI: 1:CAS:528:DC%2BD38XlsVCnsL4%3D
-
Cohen, P. et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297, 240–243 (2002).
-
(2002)
Science
, vol.297
, pp. 240-243
-
-
Cohen, P.1
-
38
-
-
76749118930
-
Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research
-
COI: 1:CAS:528:DC%2BC3cXit1OlsbY%3D
-
Martens, K., Bottelbergs, A. & Baes, M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 584, 1054–1058 (2010).
-
(2010)
FEBS Lett.
, vol.584
, pp. 1054-1058
-
-
Martens, K.1
Bottelbergs, A.2
Baes, M.3
-
39
-
-
84875787136
-
Primary prevention of cardiovascular disease with a Mediterranean diet
-
COI: 1:CAS:528:DC%2BC3sXls1akt7c%3D
-
Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 1279-1290
-
-
Estruch, R.1
-
40
-
-
84973572842
-
Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial
-
Estruch, R. et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 4, 11 (2016).
-
(2016)
Lancet Diabetes Endocrinol.
, vol.4
, pp. 11
-
-
Estruch, R.1
-
41
-
-
0035967145
-
Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses
-
COI: 1:CAS:528:DC%2BD3MXis1Gru7w%3D
-
Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).
-
(2001)
Nature
, vol.410
, pp. 588-592
-
-
Wilson, R.I.1
Nicoll, R.A.2
-
42
-
-
44949163013
-
Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms
-
COI: 1:CAS:528:DC%2BD1cXmvVCms70%3D
-
Buettner, C. et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14, 667–675 (2008).
-
(2008)
Nat. Med.
, vol.14
, pp. 667-675
-
-
Buettner, C.1
-
43
-
-
85047690626
-
The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis
-
COI: 1:CAS:528:DC%2BD3sXmtFemtrg%3D
-
Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431 (2003).
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 423-431
-
-
Cota, D.1
-
44
-
-
0037374766
-
The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells
-
COI: 1:CAS:528:DC%2BD3sXisFeksb0%3D
-
Bensaid, M. et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol. 63, 908–914 (2003).
-
(2003)
Mol. Pharmacol.
, vol.63
, pp. 908-914
-
-
Bensaid, M.1
-
45
-
-
85032895490
-
Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages
-
Ruiz de Azua, I. et al. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J. Clin. Invest. 127, 4148–4162 (2017).
-
(2017)
Journal of Clinical Investigation
, vol.127
, Issue.11
, pp. 4148-4162
-
-
Ruiz de Azua, I.1
Mancini, G.2
Srivastava, R.K.3
Rey, A.A.4
Cardinal, P.5
Tedesco, L.6
Zingaretti, C.M.7
Sassmann, A.8
Quarta, C.9
Schwitter, C.10
Conrad, A.11
Wettschureck, N.12
Vemuri, V.K.13
Makriyannis, A.14
Hartwig, J.15
Mendez-Lago, M.16
Bindila, L.17
Monory, K.18
Giordano, A.19
Cinti, S.20
Marsicano, G.21
Offermanns, S.22
Nisoli, E.23
Pagotto, U.24
Cota, D.25
Lutz, B.26
more..
-
46
-
-
39749104251
-
Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance
-
COI: 1:CAS:528:DC%2BD1cXit1yns74%3D
-
Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).
-
(2008)
Nature
, vol.451
, pp. 964-969
-
-
Yang, X.1
-
47
-
-
84864708480
-
O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability
-
COI: 1:CAS:528:DC%2BC38XhtFKiur3F
-
Ruan, H. B. et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell. Metab. 16, 226–237 (2012).
-
(2012)
Cell. Metab.
, vol.16
, pp. 226-237
-
-
Ruan, H.B.1
-
48
-
-
40449128605
-
Hepatic glucose sensing via the CREB coactivator CRTC2
-
COI: 1:CAS:528:DC%2BD1cXislSkt7s%3D
-
Dentin, R., Hedrick, S., Xie, J., Yates, J. 3rd & Montminy, M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319, 1402–1405 (2008).
-
(2008)
Science
, vol.319
, pp. 1402-1405
-
-
Dentin, R.1
Hedrick, S.2
Xie, J.3
Yates, J.4
Montminy, M.5
-
49
-
-
84885863770
-
Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation
-
COI: 1:CAS:528:DC%2BC3sXhsFaksbbI
-
Erickson, J. R. et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502, 372–376 (2013).
-
(2013)
Nature
, vol.502
, pp. 372-376
-
-
Erickson, J.R.1
-
50
-
-
84916878247
-
O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat
-
COI: 1:CAS:528:DC%2BC2cXhslGjsbjK
-
Ruan, H. B. et al. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306–317 (2014).
-
(2014)
Cell
, vol.159
, pp. 306-317
-
-
Ruan, H.B.1
-
51
-
-
84961734214
-
The nutrient sensor OGT in PVN neurons regulates feeding
-
Lagerlof, O. et al. The nutrient sensor OGT in PVN neurons regulates feeding. Science 351, 1293–1296 (2016).
-
(2016)
Science
, vol.351
, pp. 1293-1296
-
-
Lagerlof, O.1
-
52
-
-
84934977498
-
A small molecule that inhibits OGT activity in cells
-
COI: 1:CAS:528:DC%2BC2MXjvFyntro%3D
-
Ortiz-Meoz, R. F. et al. A small molecule that inhibits OGT activity in cells. Acs. Chem. Biol. 10, 1392–1397 (2015).
-
(2015)
Acs. Chem. Biol.
, vol.10
, pp. 1392-1397
-
-
Ortiz-Meoz, R.F.1
-
53
-
-
85018470937
-
Discovery of cell-permeable O-GlcNAc transferase inhibitors via tethering in situ click chemistry
-
COI: 1:CAS:528:DC%2BC28XitFKksrnP
-
Wang, Y., Zhu, J. & Zhang, L. Discovery of cell-permeable O-GlcNAc transferase inhibitors via tethering in situ click chemistry. J. Med. Chem. 60, 263–272 (2017).
-
(2017)
J. Med. Chem.
, vol.60
, pp. 263-272
-
-
Wang, Y.1
Zhu, J.2
Zhang, L.3
-
54
-
-
85029928178
-
Discovery of a low toxicity O-GlcNAc transferase (OGT) inhibitor by structure-based virtual screening of natural products
-
Liu, Y. et al. Discovery of a low toxicity O-GlcNAc transferase (OGT) inhibitor by structure-based virtual screening of natural products. Sci. Rep. 7, 12334 (2017).
-
(2017)
Sci. Rep.
, vol.7
-
-
Liu, Y.1
-
55
-
-
79251611901
-
Structure of human O-GlcNAc transferase and its complex with a peptide substrate
-
COI: 1:CAS:528:DC%2BC3MXmsFGisg%3D%3D
-
Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).
-
(2011)
Nature
, vol.469
, pp. 564-567
-
-
Lazarus, M.B.1
Nam, Y.2
Jiang, J.3
Sliz, P.4
Walker, S.5
-
56
-
-
84873362932
-
O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination
-
COI: 1:CAS:528:DC%2BC3sXitFeqsLk%3D
-
Li, M. D. et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell. Metab. 17, 303–310 (2013).
-
(2013)
Cell. Metab.
, vol.17
, pp. 303-310
-
-
Li, M.D.1
-
57
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
Yuan, M. & Lin, Y. Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19–35 (2007).
-
(2007)
Biometrika
, vol.94
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
-
58
-
-
84922879234
-
Genetic architecture of insulin resistance in the mouse
-
COI: 1:CAS:528:DC%2BC2MXhsFahtbc%3D
-
Parks, B. W. et al. Genetic architecture of insulin resistance in the mouse. Cell. Metab. 21, 334–346 (2015).
-
(2015)
Cell. Metab.
, vol.21
, pp. 334-346
-
-
Parks, B.W.1
|