메뉴 건너뛰기




Volumn 13, Issue 5, 2018, Pages

A guide to automated apoptosis detection: How to make sense of imaging flow cytometry data

Author keywords

[No Author keywords available]

Indexed keywords

APOPTOSIS; ARTICLE; AUTOMATION; CLASSIFICATION; CONTROLLED STUDY; DATA ANALYSIS; FLOW CYTOMETRY; HELA CELL LINE; HUMAN; HUMAN CELL; IMAGE ANALYSIS; IMAGING FLOW CYTOMETRY; INTERMETHOD COMPARISON; MACHINE LEARNING; SOFTWARE; ANIMAL; DEVICES; PROCEDURES;

EID: 85047213221     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0197208     Document Type: Article
Times cited : (19)

References (44)
  • 1
    • 84892687815 scopus 로고    scopus 로고
    • Single-cell technologies for monitoring immune systems
    • PMID: 24448570
    • Chattopadhyay PK, Gierahn TM, Roederer M, Love JC. Single-cell technologies for monitoring immune systems. Nature Immunology. 2014; 15(2):128–135. https://doi.org/10.1038/ni.2796 PMID: 24448570
    • (2014) Nature Immunology , vol.15 , Issue.2 , pp. 128-135
    • Chattopadhyay, P.K.1    Gierahn, T.M.2    Roederer, M.3    Love, J.C.4
  • 4
    • 84975122314 scopus 로고    scopus 로고
    • Computational flow cytometry: Helping to make sense of high-dimensional immunology data
    • PMID: 27320317
    • Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nature Reviews Immunology. 2016; 16(7):449–462. https://doi.org/10.1038/nri.2016.56 PMID: 27320317
    • (2016) Nature Reviews Immunology , vol.16 , Issue.7 , pp. 449-462
    • Saeys, Y.1    Van Gassen, S.2    Lambrecht, B.N.3
  • 8
    • 85006141636 scopus 로고    scopus 로고
    • High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton
    • PMID: 27958529
    • Lai QTK, Lee KCM, Tang AHL, Wong KKY, So HKH, Tsia KK. High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton. Optics Express. 2016; 24(25):28170–28184. https://doi.org/10.1364/OE.24.028170 PMID: 27958529
    • (2016) Optics Express , vol.24 , Issue.25 , pp. 28170-28184
    • Lai, Q.T.K.1    Lee, K.C.M.2    Tang, A.H.L.3    Wong, K.K.Y.4    So, H.K.H.5    Tsia, K.K.6
  • 9
    • 85030317641 scopus 로고    scopus 로고
    • Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning
    • Kobayashi H, Lei C, Wu Y, Mao A, Jiang Y, Guo B, et al. Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning. Scientific Reports. 2017; 7(1). https://doi.org/10.1038/s41598-017-12378-4
    • (2017) Scientific Reports , vol.7 , Issue.1
    • Kobayashi, H.1    Lei, C.2    Wu, Y.3    Mao, A.4    Jiang, Y.5    Guo, B.6
  • 10
    • 84919389078 scopus 로고    scopus 로고
    • Challenges of Big Data analysis
    • PMID: 25419469
    • Fan J, Han F, Liu H. Challenges of Big Data analysis. National Science Review. 2014; 1(2):293–314. https://doi.org/10.1093/nsr/nwt032 PMID: 25419469
    • (2014) National Science Review , vol.1 , Issue.2 , pp. 293-314
    • Fan, J.1    Han, F.2    Liu, H.3
  • 11
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • PMID: 17720704
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007; 23(19):2507–2517. https://doi.org/10.1093/bioinformatics/btm344 PMID: 17720704
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 14
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • HLT’91. Stroudsburg, PA, USA: Association for Computational Linguistics
    • Lewis DD. Feature Selection and Feature Extraction for Text Categorization. In: Proceedings of the Workshop on Speech and Natural Language. HLT’91. Stroudsburg, PA, USA: Association for Computational Linguistics; 1992. p. 212–217.
    • (1992) Proceedings of The Workshop on Speech and Natural Language. , pp. 212-217
    • Lewis, D.D.1
  • 15
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • Brown G, Pocock A, Zhao MJ, Luján M. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection. Journal of Machine Learning Research. 2012; 13:27–66.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.J.3    Luján, M.4
  • 16
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • PMID: 16119262
    • Peng H, Long F, Ding C. Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005; 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 18
    • 85010936449 scopus 로고    scopus 로고
    • Flow cytometric single-cell identification of populations in synthetic bacterial communities
    • PMID: 28122063
    • Rubbens P, Props R, Boon N, Waegeman W. Flow cytometric single-cell identification of populations in synthetic bacterial communities. PLoS ONE. 2017; 12(1). https://doi.org/10.1371/journal.pone. 0169754 PMID: 28122063
    • (2017) PLoS ONE , vol.12 , Issue.1
    • Rubbens, P.1    Props, R.2    Boon, N.3    Waegeman, W.4
  • 20
    • 80055063556 scopus 로고    scopus 로고
    • Distance metrics for high dimensional nearest neighborhood recovery: Compression and normalization
    • France SL, Douglas Carroll J, Xiong H. Distance metrics for high dimensional nearest neighborhood recovery: Compression and normalization. Information Sciences. 2012; 184(1):92–110. https://doi.org/10.1016/j.ins.2011.07.048
    • (2012) Information Sciences , vol.184 , Issue.1 , pp. 92-110
    • France, S.L.1    Douglas Carroll, J.2    Xiong, H.3
  • 22
    • 55449125185 scopus 로고    scopus 로고
    • Support vector machines and kernels for computational biology
    • PMID: 18974822
    • Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G. Support vector machines and kernels for computational biology. PLoS Computational Biology. 2008; 4(10). https://doi.org/10.1371/journal.pcbi. 1000173 PMID: 18974822
    • (2008) PLoS Computational Biology , vol.4 , Issue.10
    • Ben-Hur, A.1    Ong, C.S.2    Sonnenburg, S.3    Schölkopf, B.4    Rätsch, G.5
  • 23
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995; 20(3):273–297. https://doi.org/10.1007/BF00994018
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 25
    • 84879867381 scopus 로고    scopus 로고
    • Scaling up kernel SVM on limited resources: A low-rank linearization approach
    • Zhang K, Lan L, Wang Z, Moerchen F. Scaling up kernel SVM on limited resources: A low-rank linearization approach. Journal of Machine Learning Research. 2012; 22:1425–1434.
    • (2012) Journal of Machine Learning Research , vol.22 , pp. 1425-1434
    • Zhang, K.1    Lan, L.2    Wang, Z.3    Moerchen, F.4
  • 32
    • 84901045035 scopus 로고    scopus 로고
    • Systems biology of death receptor networks: Live and let die
    • Lavrik IN. Systems biology of death receptor networks: Live and let die. Cell Death and Disease. 2014; 5(5). https://doi.org/10.1038/cddis.2014.160
    • (2014) Cell Death and Disease , vol.5 , Issue.5
    • Lavrik, I.N.1
  • 33
    • 84879155766 scopus 로고    scopus 로고
    • Measuring apoptosis by microscopy and flow cytometry
    • PMID: 23403105
    • Henry CM, Hollville E, Martin SJ. Measuring apoptosis by microscopy and flow cytometry. Methods. 2013; 61(2):90–97. https://doi.org/10.1016/j.ymeth.2013.01.008 PMID: 23403105
    • (2013) Methods , vol.61 , Issue.2 , pp. 90-97
    • Henry, C.M.1    Hollville, E.2    Martin, S.J.3
  • 34
    • 84938207581 scopus 로고    scopus 로고
    • Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining
    • PMID: 25975759
    • Pietkiewicz S, Schmidt JH, Lavrik IN. Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. Journal of Immunological Methods. 2015; 423:99–103. https://doi.org/10.1016/j.jim.2015.04.025 PMID: 25975759
    • (2015) Journal of Immunological Methods , vol.423 , pp. 99-103
    • Pietkiewicz, S.1    Schmidt, J.H.2    Lavrik, I.N.3
  • 35
    • 84938197708 scopus 로고    scopus 로고
    • Quantification of CD95-induced apoptosis and NF-κB activation at the single cell level
    • PMID: 25967949
    • Schmidt JH, Pietkiewicz S, Naumann M, Lavrik IN. Quantification of CD95-induced apoptosis and NF-κB activation at the single cell level. Journal of Immunological Methods. 2015; 423:12–17. https://doi.org/10.1016/j.jim.2015.04.026 PMID: 25967949
    • (2015) Journal of Immunological Methods , vol.423 , pp. 12-17
    • Schmidt, J.H.1    Pietkiewicz, S.2    Naumann, M.3    Lavrik, I.N.4
  • 37
    • 84872812260 scopus 로고    scopus 로고
    • Class-imbalanced classifiers for high-dimensional data
    • PMID: 22408190
    • Lin W, Chen JJ. Class-imbalanced classifiers for high-dimensional data. Briefings in Bioinformatics. 2013; 14(1):13–26. https://doi.org/10.1093/bib/bbs006 PMID: 22408190
    • (2013) Briefings in Bioinformatics , vol.14 , Issue.1 , pp. 13-26
    • Lin, W.1    Chen, J.J.2
  • 38
    • 84955300805 scopus 로고    scopus 로고
    • CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer
    • PMID: 26138335
    • Higuchi T, Flies DB, Marjon NA, Mantia-Smaldone G, Ronner L, Gimotty PA, et al. CTLA-4 Blockade Synergizes Therapeutically with PARP Inhibition in BRCA1-Deficient Ovarian Cancer. Cancer Immunology Research. 2015; 3(11):1257–1268. https://doi.org/10.1158/2326-6066.CIR-15-0044 PMID: 26138335
    • (2015) Cancer Immunology Research , vol.3 , Issue.11 , pp. 1257-1268
    • Higuchi, T.1    Flies, D.B.2    Marjon, N.A.3    Mantia-Smaldone, G.4    Ronner, L.5    Gimotty, P.A.6
  • 39
    • 85029295324 scopus 로고    scopus 로고
    • Quantitative analysis and comparison of 3D morphology between viable and apoptotic MCF-7 breast cancer cells and characterization of nuclear fragmentation
    • Wen Y, Chen Z, Lu J, Ables E, Scemama JL, Yang LV, et al. Quantitative analysis and comparison of 3D morphology between viable and apoptotic MCF-7 breast cancer cells and characterization of nuclear fragmentation. PLoS ONE. 2017; 12(9). https://doi.org/10.1371/journal.pone.0184726
    • (2017) PLoS ONE , vol.12 , Issue.9
    • Wen, Y.1    Chen, Z.2    Lu, J.3    Ables, E.4    Scemama, J.L.5    Yang, L.V.6
  • 41
    • 84994481737 scopus 로고    scopus 로고
    • An open-source solution for advanced imaging flow cytometry data analysis using machine learning
    • PMID: 27594698
    • Hennig H, Rees P, Blasi T, Kamentsky L, Hung J, Dao D, et al. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Methods. 2017; 112:201–210. https://doi.org/10.1016/j.ymeth.2016.08.018 PMID: 27594698
    • (2017) Methods , vol.112 , pp. 201-210
    • Hennig, H.1    Rees, P.2    Blasi, T.3    Kamentsky, L.4    Hung, J.5    Dao, D.6
  • 44
    • 77949405660 scopus 로고    scopus 로고
    • Dynamics within the CD95 death-inducing signaling complex decide life and death of cells
    • PMID: 20212524
    • Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, et al. Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Molecular Systems Biology. 2010; 6. https://doi.org/10.1038/msb.2010.6 PMID: 20212524
    • (2010) Molecular Systems Biology , vol.6
    • Neumann, L.1    Pforr, C.2    Beaudouin, J.3    Pappa, A.4    Fricker, N.5    Krammer, P.H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.