-
1
-
-
84892687815
-
Single-cell technologies for monitoring immune systems
-
PMID: 24448570
-
Chattopadhyay PK, Gierahn TM, Roederer M, Love JC. Single-cell technologies for monitoring immune systems. Nature Immunology. 2014; 15(2):128–135. https://doi.org/10.1038/ni.2796 PMID: 24448570
-
(2014)
Nature Immunology
, vol.15
, Issue.2
, pp. 128-135
-
-
Chattopadhyay, P.K.1
Gierahn, T.M.2
Roederer, M.3
Love, J.C.4
-
2
-
-
34447542504
-
Cellular image analysis and imaging by flow cytometry
-
PMID: 17658411
-
Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P. Cellular Image Analysis and Imaging by Flow Cytometry. Clinics in Laboratory Medicine. 2007; 27(3):653–670. https://doi.org/10.1016/j.cll.2007.05.008 PMID: 17658411
-
(2007)
Clinics in Laboratory Medicine
, vol.27
, Issue.3
, pp. 653-670
-
-
Basiji, D.A.1
Ortyn, W.E.2
Liang, L.3
Venkatachalam, V.4
Morrissey, P.5
-
4
-
-
84975122314
-
Computational flow cytometry: Helping to make sense of high-dimensional immunology data
-
PMID: 27320317
-
Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nature Reviews Immunology. 2016; 16(7):449–462. https://doi.org/10.1038/nri.2016.56 PMID: 27320317
-
(2016)
Nature Reviews Immunology
, vol.16
, Issue.7
, pp. 449-462
-
-
Saeys, Y.1
Van Gassen, S.2
Lambrecht, B.N.3
-
5
-
-
84872256757
-
Machine learning and its applications to biology
-
PMID: 17604446
-
Tarca AL, Carey VJ, Chen XW, Romero R, Drǎghici S. Machine learning and its applications to biology. PLoS Computational Biology. 2007; 3(6). https://doi.org/10.1371/journal.pcbi.0030116 PMID: 17604446
-
(2007)
PLoS Computational Biology
, vol.3
, Issue.6
-
-
Tarca, A.L.1
Carey, V.J.2
Chen, X.W.3
Romero, R.4
Drǎghici, S.5
-
6
-
-
84960984309
-
Deep learning in label-free cell classification
-
Chen CL, Mahjoubfar A, Tai LC, Blaby IK, Huang A, Niazi KR, et al. Deep Learning in Label-free Cell Classification. Scientific Reports. 2016; 6.
-
(2016)
Scientific Reports
, vol.6
-
-
Chen, C.L.1
Mahjoubfar, A.2
Tai, L.C.3
Blaby, I.K.4
Huang, A.5
Niazi, K.R.6
-
7
-
-
84953896921
-
Label-free cell cycle analysis for high-throughput imaging flow cytometry
-
PMID: 26739115
-
Blasi T, Hennig H, Summers HD, Theis FJ, Cerveira J, Patterson JO, et al. Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nature Communications. 2016; 7. https://doi.org/10.1038/ ncomms10256 PMID: 26739115
-
(2016)
Nature Communications
, vol.7
-
-
Blasi, T.1
Hennig, H.2
Summers, H.D.3
Theis, F.J.4
Cerveira, J.5
Patterson, J.O.6
-
8
-
-
85006141636
-
High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton
-
PMID: 27958529
-
Lai QTK, Lee KCM, Tang AHL, Wong KKY, So HKH, Tsia KK. High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton. Optics Express. 2016; 24(25):28170–28184. https://doi.org/10.1364/OE.24.028170 PMID: 27958529
-
(2016)
Optics Express
, vol.24
, Issue.25
, pp. 28170-28184
-
-
Lai, Q.T.K.1
Lee, K.C.M.2
Tang, A.H.L.3
Wong, K.K.Y.4
So, H.K.H.5
Tsia, K.K.6
-
9
-
-
85030317641
-
Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning
-
Kobayashi H, Lei C, Wu Y, Mao A, Jiang Y, Guo B, et al. Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning. Scientific Reports. 2017; 7(1). https://doi.org/10.1038/s41598-017-12378-4
-
(2017)
Scientific Reports
, vol.7
, Issue.1
-
-
Kobayashi, H.1
Lei, C.2
Wu, Y.3
Mao, A.4
Jiang, Y.5
Guo, B.6
-
10
-
-
84919389078
-
Challenges of Big Data analysis
-
PMID: 25419469
-
Fan J, Han F, Liu H. Challenges of Big Data analysis. National Science Review. 2014; 1(2):293–314. https://doi.org/10.1093/nsr/nwt032 PMID: 25419469
-
(2014)
National Science Review
, vol.1
, Issue.2
, pp. 293-314
-
-
Fan, J.1
Han, F.2
Liu, H.3
-
11
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
PMID: 17720704
-
Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007; 23(19):2507–2517. https://doi.org/10.1093/bioinformatics/btm344 PMID: 17720704
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
14
-
-
0002312061
-
Feature selection and feature extraction for text categorization
-
HLT’91. Stroudsburg, PA, USA: Association for Computational Linguistics
-
Lewis DD. Feature Selection and Feature Extraction for Text Categorization. In: Proceedings of the Workshop on Speech and Natural Language. HLT’91. Stroudsburg, PA, USA: Association for Computational Linguistics; 1992. p. 212–217.
-
(1992)
Proceedings of The Workshop on Speech and Natural Language.
, pp. 212-217
-
-
Lewis, D.D.1
-
15
-
-
84863403768
-
Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
-
Brown G, Pocock A, Zhao MJ, Luján M. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection. Journal of Machine Learning Research. 2012; 13:27–66.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 27-66
-
-
Brown, G.1
Pocock, A.2
Zhao, M.J.3
Luján, M.4
-
16
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
PMID: 16119262
-
Peng H, Long F, Ding C. Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005; 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
18
-
-
85010936449
-
Flow cytometric single-cell identification of populations in synthetic bacterial communities
-
PMID: 28122063
-
Rubbens P, Props R, Boon N, Waegeman W. Flow cytometric single-cell identification of populations in synthetic bacterial communities. PLoS ONE. 2017; 12(1). https://doi.org/10.1371/journal.pone. 0169754 PMID: 28122063
-
(2017)
PLoS ONE
, vol.12
, Issue.1
-
-
Rubbens, P.1
Props, R.2
Boon, N.3
Waegeman, W.4
-
20
-
-
80055063556
-
Distance metrics for high dimensional nearest neighborhood recovery: Compression and normalization
-
France SL, Douglas Carroll J, Xiong H. Distance metrics for high dimensional nearest neighborhood recovery: Compression and normalization. Information Sciences. 2012; 184(1):92–110. https://doi.org/10.1016/j.ins.2011.07.048
-
(2012)
Information Sciences
, vol.184
, Issue.1
, pp. 92-110
-
-
France, S.L.1
Douglas Carroll, J.2
Xiong, H.3
-
22
-
-
55449125185
-
Support vector machines and kernels for computational biology
-
PMID: 18974822
-
Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G. Support vector machines and kernels for computational biology. PLoS Computational Biology. 2008; 4(10). https://doi.org/10.1371/journal.pcbi. 1000173 PMID: 18974822
-
(2008)
PLoS Computational Biology
, vol.4
, Issue.10
-
-
Ben-Hur, A.1
Ong, C.S.2
Sonnenburg, S.3
Schölkopf, B.4
Rätsch, G.5
-
23
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995; 20(3):273–297. https://doi.org/10.1007/BF00994018
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
30
-
-
34548279044
-
Model selection for support vector machines via uniform design
-
Huang CM, Lee YJ, Lin DKJ, Huang SY. Model selection for support vector machines via uniform design. Computational Statistics and Data Analysis. 2007; 52(1):335–346. https://doi.org/10.1016/j.csda.2007.02.013
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, Issue.1
, pp. 335-346
-
-
Huang, C.M.1
Lee, Y.J.2
Lin, D.K.J.3
Huang, S.Y.4
-
31
-
-
0004053609
-
-
Technical report, Department of Computer Science, Oregon State University
-
Dietterich TG, Kong EB. Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Technical report, Department of Computer Science, Oregon State University; 1995.
-
(1995)
Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms
-
-
Dietterich, T.G.1
Kong, E.B.2
-
32
-
-
84901045035
-
Systems biology of death receptor networks: Live and let die
-
Lavrik IN. Systems biology of death receptor networks: Live and let die. Cell Death and Disease. 2014; 5(5). https://doi.org/10.1038/cddis.2014.160
-
(2014)
Cell Death and Disease
, vol.5
, Issue.5
-
-
Lavrik, I.N.1
-
33
-
-
84879155766
-
Measuring apoptosis by microscopy and flow cytometry
-
PMID: 23403105
-
Henry CM, Hollville E, Martin SJ. Measuring apoptosis by microscopy and flow cytometry. Methods. 2013; 61(2):90–97. https://doi.org/10.1016/j.ymeth.2013.01.008 PMID: 23403105
-
(2013)
Methods
, vol.61
, Issue.2
, pp. 90-97
-
-
Henry, C.M.1
Hollville, E.2
Martin, S.J.3
-
34
-
-
84938207581
-
Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining
-
PMID: 25975759
-
Pietkiewicz S, Schmidt JH, Lavrik IN. Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. Journal of Immunological Methods. 2015; 423:99–103. https://doi.org/10.1016/j.jim.2015.04.025 PMID: 25975759
-
(2015)
Journal of Immunological Methods
, vol.423
, pp. 99-103
-
-
Pietkiewicz, S.1
Schmidt, J.H.2
Lavrik, I.N.3
-
35
-
-
84938197708
-
Quantification of CD95-induced apoptosis and NF-κB activation at the single cell level
-
PMID: 25967949
-
Schmidt JH, Pietkiewicz S, Naumann M, Lavrik IN. Quantification of CD95-induced apoptosis and NF-κB activation at the single cell level. Journal of Immunological Methods. 2015; 423:12–17. https://doi.org/10.1016/j.jim.2015.04.026 PMID: 25967949
-
(2015)
Journal of Immunological Methods
, vol.423
, pp. 12-17
-
-
Schmidt, J.H.1
Pietkiewicz, S.2
Naumann, M.3
Lavrik, I.N.4
-
37
-
-
84872812260
-
Class-imbalanced classifiers for high-dimensional data
-
PMID: 22408190
-
Lin W, Chen JJ. Class-imbalanced classifiers for high-dimensional data. Briefings in Bioinformatics. 2013; 14(1):13–26. https://doi.org/10.1093/bib/bbs006 PMID: 22408190
-
(2013)
Briefings in Bioinformatics
, vol.14
, Issue.1
, pp. 13-26
-
-
Lin, W.1
Chen, J.J.2
-
38
-
-
84955300805
-
CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer
-
PMID: 26138335
-
Higuchi T, Flies DB, Marjon NA, Mantia-Smaldone G, Ronner L, Gimotty PA, et al. CTLA-4 Blockade Synergizes Therapeutically with PARP Inhibition in BRCA1-Deficient Ovarian Cancer. Cancer Immunology Research. 2015; 3(11):1257–1268. https://doi.org/10.1158/2326-6066.CIR-15-0044 PMID: 26138335
-
(2015)
Cancer Immunology Research
, vol.3
, Issue.11
, pp. 1257-1268
-
-
Higuchi, T.1
Flies, D.B.2
Marjon, N.A.3
Mantia-Smaldone, G.4
Ronner, L.5
Gimotty, P.A.6
-
39
-
-
85029295324
-
Quantitative analysis and comparison of 3D morphology between viable and apoptotic MCF-7 breast cancer cells and characterization of nuclear fragmentation
-
Wen Y, Chen Z, Lu J, Ables E, Scemama JL, Yang LV, et al. Quantitative analysis and comparison of 3D morphology between viable and apoptotic MCF-7 breast cancer cells and characterization of nuclear fragmentation. PLoS ONE. 2017; 12(9). https://doi.org/10.1371/journal.pone.0184726
-
(2017)
PLoS ONE
, vol.12
, Issue.9
-
-
Wen, Y.1
Chen, Z.2
Lu, J.3
Ables, E.4
Scemama, J.L.5
Yang, L.V.6
-
41
-
-
84994481737
-
An open-source solution for advanced imaging flow cytometry data analysis using machine learning
-
PMID: 27594698
-
Hennig H, Rees P, Blasi T, Kamentsky L, Hung J, Dao D, et al. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Methods. 2017; 112:201–210. https://doi.org/10.1016/j.ymeth.2016.08.018 PMID: 27594698
-
(2017)
Methods
, vol.112
, pp. 201-210
-
-
Hennig, H.1
Rees, P.2
Blasi, T.3
Kamentsky, L.4
Hung, J.5
Dao, D.6
-
42
-
-
84923111986
-
Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning
-
Blanchet L, Smeitink JAM, Van Emst De Vries SE, Vogels C, Pellegrini M, Jonckheere AI, et al. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning. Scientific Reports. 2015; 5. https://doi.org/10.1038/srep08035
-
(2015)
Scientific Reports
, vol.5
-
-
Blanchet, L.1
Smeitink, J.A.M.2
Van Emst De Vries, S.E.3
Vogels, C.4
Pellegrini, M.5
Jonckheere, A.I.6
-
44
-
-
77949405660
-
Dynamics within the CD95 death-inducing signaling complex decide life and death of cells
-
PMID: 20212524
-
Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, et al. Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Molecular Systems Biology. 2010; 6. https://doi.org/10.1038/msb.2010.6 PMID: 20212524
-
(2010)
Molecular Systems Biology
, vol.6
-
-
Neumann, L.1
Pforr, C.2
Beaudouin, J.3
Pappa, A.4
Fricker, N.5
Krammer, P.H.6
|