-
1
-
-
84962306691
-
-
World Economic Forum (accessed 18 Aug 2018)
-
World Economic Forum, 2016. The fourth industrial revolution: what it means, how to respond. https://www. weforum. org/ agenda/ 2016/ 01/ the-fourth-industrial-revolutionwhat-it-means-and-how-to-respond/ (accessed 18 Aug 2018).
-
(2016)
The Fourth Industrial Revolution: What It Means, How to Respond
-
-
-
3
-
-
84986325670
-
Accelerating very deep convolutional networks for classification and detection
-
Zhang X, Zou J, He K, et al. Accelerating very deep convolutional networks for classification and detection. IEEE Trans Pattern Anal Mach Intell 2016;38:1943-55.
-
(2016)
IEEE Trans Pattern Anal Mach Intell
, vol.38
, pp. 1943-1955
-
-
Zhang, X.1
Zou, J.2
He, K.3
-
4
-
-
84969962996
-
Deep convolutional neural networks for computeraided detection: Cnn architectures, dataset characteristics and transfer learning
-
Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computeraided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285-98.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1285-1298
-
-
Shin, H.C.1
Roth, H.R.2
Gao, M.3
-
5
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
Tompson J, Jain A, LeCun Y. Joint training of a convolutional network and a graphical model for human pose estimation. Advances in Neural Information Processing Systems 2014;27:1799-807.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 1799-1807
-
-
Tompson, J.1
Jain, A.2
LeCun, Y.3
-
6
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
Hinton G, Deng L, Yu D. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine 2012;29:82-97.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
-
7
-
-
85025112337
-
Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks
-
Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284:574-82.
-
(2017)
Radiology
, vol.284
, pp. 574-582
-
-
Lakhani, P.1
Sundaram, B.2
-
8
-
-
85041456216
-
Clinical applicability of deep learning system in detecting tuberculosis with chest radiography
-
Ting DSW, Yi PH, Hui F. Clinical applicability of deep learning system in detecting tuberculosis with chest radiography. Radiology 2018;286:729-31.
-
(2018)
Radiology
, vol.286
, pp. 729-731
-
-
Ting, D.S.W.1
Yi, P.H.2
Hui, F.3
-
9
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
10
-
-
85038431889
-
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
-
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318:2199-210.
-
(2017)
JAMA
, vol.318
, pp. 2199-2210
-
-
Ehteshami Bejnordi, B.1
Veta, M.2
Johannes Van Diest, P.3
-
11
-
-
85038438910
-
Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
-
Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017;318:2211-23.
-
(2017)
JAMA
, vol.318
, pp. 2211-2223
-
-
Ting, D.S.W.1
Cheung, C.Y.2
Lim, G.3
-
12
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
13
-
-
85023600747
-
Deep-learning based, automated segmentation of macular edema in optical coherence tomography
-
Lee CS, Tyring AJ, Deruyter NP, et al. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express 2017;8:3440-8.
-
(2017)
Biomed Opt Express
, vol.8
, pp. 3440-3448
-
-
Lee, C.S.1
Tyring, A.J.2
Deruyter, N.P.3
-
14
-
-
84990193991
-
Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
-
Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 2016;57:5200-6.
-
(2016)
Invest Ophthalmol Vis Sci
, vol.57
, pp. 5200-5206
-
-
Abràmoff, M.D.1
Lou, Y.2
Erginay, A.3
-
15
-
-
85016221341
-
Automated identification of diabetic retinopathy using deep learning
-
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017;124:962-9.
-
(2017)
Ophthalmology
, vol.124
, pp. 962-969
-
-
Gargeya, R.1
Leng, T.2
-
16
-
-
85042596911
-
Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
-
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018;125:1199-206.
-
(2018)
Ophthalmology
, vol.125
, pp. 1199-1206
-
-
Li, Z.1
He, Y.2
Keel, S.3
-
17
-
-
85034636594
-
Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
-
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol 2017;135:1170-6.
-
(2017)
JAMA Ophthalmol
, vol.135
, pp. 1170-1176
-
-
Burlina, P.M.1
Joshi, N.2
Pekala, M.3
-
18
-
-
85045109230
-
A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography
-
Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 2018;125:1410-20.
-
(2018)
Ophthalmology
, vol.125
, pp. 1410-1420
-
-
Grassmann, F.1
Mengelkamp, J.2
Brandl, C.3
-
19
-
-
85049693038
-
Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks
-
Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol 2018;136:803-10.
-
(2018)
JAMA Ophthalmol
, vol.136
, pp. 803-810
-
-
Brown, J.M.1
Campbell, J.P.2
Beers, A.3
-
20
-
-
85042201755
-
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
-
Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018;2:158-64.
-
(2018)
Nat Biomed Eng
, vol.2
, pp. 158-164
-
-
Poplin, R.1
Varadarajan, A.V.2
Blumer, K.3
-
21
-
-
85048032246
-
Deep learning for predicting refractive error from retinal fundus images
-
Varadarajan AV, Poplin R, Blumer K, et al. Deep learning for predicting refractive error from retinal fundus images. Invest Ophthalmol Vis Sci 2018;59:2861-8.
-
(2018)
Invest Ophthalmol Vis Sci
, vol.59
, pp. 2861-2868
-
-
Varadarajan, A.V.1
Poplin, R.2
Blumer, K.3
-
22
-
-
84859030420
-
Global prevalence and major risk factors of diabetic retinopathy
-
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35:556-64.
-
(2012)
Diabetes Care
, vol.35
, pp. 556-564
-
-
Yau, J.W.1
Rogers, S.L.2
Kawasaki, R.3
-
23
-
-
0033848553
-
Effectiveness of screening and monitoring tests for diabetic retinopathy-A systematic review
-
Hutchinson A, McIntosh A, Peters J, et al. Effectiveness of screening and monitoring tests for diabetic retinopathy-a systematic review. Diabet Med 2000;17:495-506.
-
(2000)
Diabet Med
, vol.17
, pp. 495-506
-
-
Hutchinson, A.1
McIntosh, A.2
Peters, J.3
-
24
-
-
0038237228
-
Comparison of two reference standards in validating two field mydriatic digital photography as a method of screening for diabetic retinopathy
-
Scanlon PH, Malhotra R, Greenwood RH, et al. Comparison of two reference standards in validating two field mydriatic digital photography as a method of screening for diabetic retinopathy. Br J Ophthalmol 2003;87:1258-63.
-
(2003)
Br J Ophthalmol
, vol.87
, pp. 1258-1263
-
-
Scanlon, P.H.1
Malhotra, R.2
Greenwood, R.H.3
-
25
-
-
19744375720
-
Sustainingremote-area programs: Retinal camera use by Aboriginal health workers and nurses in a Kimberley partnership
-
Murray R, Metcalf SM, Lewis PM. Sustainingremote-area programs: retinal camera use by Aboriginal health workers and nurses in a Kimberley partnership. MedJ Aust 2005;182:520-3.
-
(2005)
MedJ Aust
, vol.182
, pp. 520-523
-
-
Murray, R.1
Metcalf, S.M.2
Lewis, P.M.3
-
26
-
-
79961025284
-
Retinal video recording a new way to image and diagnose diabetic retinopathy
-
Ting DS, Tay-Kearney ML, Constable I, et al. Retinal video recording a new way to image and diagnose diabetic retinopathy. Ophthalmology 2011;118:1588-93.
-
(2011)
Ophthalmology
, vol.118
, pp. 1588-1593
-
-
Ting, D.S.1
Tay-Kearney, M.L.2
Constable, I.3
-
27
-
-
84974782886
-
Diabetic retinopathy: Global prevalence, major risk factors, screening practices and public health challenges: A review
-
Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol 2016;44:260-77.
-
(2016)
Clin Exp Ophthalmol
, vol.44
, pp. 260-277
-
-
Ting, D.S.1
Cheung, G.C.2
Wong, T.Y.3
-
28
-
-
85095168170
-
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
-
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018;1:1-8.
-
(2018)
NPJ Digit Med
, vol.1
, pp. 1-8
-
-
-
29
-
-
84940535056
-
Effect of omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function: The areds2 randomized clinical trial
-
Chew EY, Clemons TE, Agrón E, et al. Effect of omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function: the areds2 randomized clinical trial. JAMA 2015;314:791-801.
-
(2015)
JAMA
, vol.314
, pp. 791-801
-
-
Chew, E.Y.1
Clemons, T.E.2
Agrón, E.3
-
30
-
-
84892965801
-
Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and metaanalysis
-
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and metaanalysis. Lancet Glob Health 2014;2:e106-16.
-
(2014)
Lancet Glob Health
, vol.2
, pp. e106-e116
-
-
Wong, W.L.1
Su, X.2
Li, X.3
-
31
-
-
85067181070
-
-
Centers for Medicare & Medicaid Services (accessed 4 Sep 2018)
-
Centers for Medicare & Medicaid Services, 2018. CMS medicare provider utilization and payment data. https://www. cms. gov/ Research-Statistics-Data-and-Systems/ Statistics-Trends-and-Reports/ Medicare-Provider-Charge-Data/ index. html (accessed 4 Sep 2018).
-
(2018)
CMS Medicare Provider Utilization and Payment Data
-
-
-
32
-
-
85027881492
-
Deep learning is effective for classifying normal versus age-related macular degeneration OCT images
-
Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol Retina 2017;1:322-7.
-
(2017)
Ophthalmol Retina
, vol.1
, pp. 322-327
-
-
Lee, C.S.1
Baughman, D.M.2
Lee, A.Y.3
-
33
-
-
85034588954
-
Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning
-
Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol 2018;256:259-65.
-
(2018)
Graefes Arch Clin Exp Ophthalmol
, vol.256
, pp. 259-265
-
-
Treder, M.1
Lauermann, J.L.2
Eter, N.3
-
34
-
-
85042389905
-
Identifying medical diagnoses and treatable diseases by image-based deep learning
-
Kermany DS, Goldbaum M, Cai W. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172:1122-31.
-
(2018)
Cell
, vol.172
, pp. 1122-1131
-
-
Kermany, D.S.1
Goldbaum, M.2
Cai, W.3
-
35
-
-
85046542182
-
AI for medical imaging goes deep
-
Ting DSW, Liu Y, Burlina P, et al. AI for medical imaging goes deep. Nat Med 2018;24:539-40.
-
(2018)
Nat Med
, vol.24
, pp. 539-540
-
-
Ting, D.S.W.1
Liu, Y.2
Burlina, P.3
-
37
-
-
85026815234
-
ReLayNet: Retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks
-
Roy AG, Conjeti S, Karri SPK, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express 2017;8:3627-42.
-
(2017)
Biomed Opt Express
, vol.8
, pp. 3627-3642
-
-
Roy, A.G.1
Conjeti, S.2
Karri, S.P.K.3
-
38
-
-
85044925205
-
Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography
-
Venhuizen FG, van Ginneken B, Liefers B, et al. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomed Opt Express 2018;9:1545-69.
-
(2018)
Biomed Opt Express
, vol.9
, pp. 1545-1569
-
-
Venhuizen, F.G.1
Van Ginneken, B.2
Liefers, B.3
-
39
-
-
85049375346
-
Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers
-
Hamwood J, Alonso-Caneiro D, Read SA, et al. Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers. Biomed Opt Express 2018;9:3049-66.
-
(2018)
Biomed Opt Express
, vol.9
, pp. 3049-3066
-
-
Hamwood, J.1
Alonso-Caneiro, D.2
Read, S.A.3
-
40
-
-
85019034945
-
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
-
Fang L, Cunefare D, Wang C, et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed Opt Express 2017;8:2732-44.
-
(2017)
Biomed Opt Express
, vol.8
, pp. 2732-2744
-
-
Fang, L.1
Cunefare, D.2
Wang, C.3
-
41
-
-
85029811540
-
Automated segmentation of the choroid in EDI-OCT images with retinal pathology using convolution neural networks
-
Chen M, Wang J, Oguz I, et al. Automated segmentation of the choroid in EDI-OCT images with retinal pathology using convolution neural networks. Fetal Infant Ophthalmic Med Image Anal 2017;10554:177-84.
-
(2017)
Fetal Infant Ophthalmic Med Image Anal
, vol.1055
, pp. 177-184
-
-
Chen, M.1
Wang, J.2
Oguz, I.3
-
42
-
-
84978683018
-
Segmentation of the foveal microvasculature using deep learning networks
-
Prentaŝic P, Heisler M, Mammo Z, et al. Segmentation of the foveal microvasculature using deep learning networks. J Biomed Opt 2016;21:75008.
-
(2016)
J Biomed Opt
, vol.21
, pp. 75008
-
-
Prentaŝic, P.1
Heisler, M.2
Mammo, Z.3
-
43
-
-
85052522615
-
Clinically applicable deep learning for diagnosis and referral in retinal disease
-
De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342-50.
-
(2018)
Nat Med
, vol.24
, pp. 1342-1350
-
-
De Fauw, J.1
Ledsam, J.R.2
Romera-Paredes, B.3
-
44
-
-
85033476665
-
How to defuse a demographic time bomb: The way forward?
-
Buchan JC, Amoaku W, Barnes B, et al. How to defuse a demographic time bomb: the way forward? Eye 2017;31:1519-22.
-
(2017)
Eye
, vol.31
, pp. 1519-1522
-
-
Buchan, J.C.1
Amoaku, W.2
Barnes, B.3
-
45
-
-
85060667393
-
-
2018. OCT rollout in every specsavers announced. (accessed 4 Sep
-
2018. OCT rollout in every specsavers announced. https://www. aop. org. uk/ ot/ industry/ high-street/ 2017/ 05/ 22/ oct-rollout-in-every-specsavers-announced (accessed 4 Sep 2018).
-
(2018)
-
-
-
46
-
-
84908473395
-
Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis
-
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014;121:2081-90.
-
(2014)
Ophthalmology
, vol.121
, pp. 2081-2090
-
-
Tham, Y.C.1
Li, X.2
Wong, T.Y.3
-
47
-
-
0023927705
-
Size of the optic nerve scleral canal and comparison with intravital determination of optic disc dimensions
-
Jonas JB, Gusek GC, Guggenmoos-Holzmann I, et al. Size of the optic nerve scleral canal and comparison with intravital determination of optic disc dimensions. Graefes Arch Clin Exp Ophthalmol 1988;226:213-5.
-
(1988)
Graefes Arch Clin Exp Ophthalmol
, vol.226
, pp. 213-215
-
-
Jonas, J.B.1
Gusek, G.C.2
Guggenmoos-Holzmann, I.3
-
48
-
-
85048054062
-
Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression
-
Christopher M, Belghith A, Weinreb RN, et al. Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Invest Ophthalmol Vis Sci 2018;59:2748-56.
-
(2018)
Invest Ophthalmol Vis Sci
, vol.59
, pp. 2748-2756
-
-
Christopher, M.1
Belghith, A.2
Weinreb, R.N.3
-
49
-
-
85005926424
-
Patterns of functional vision loss in glaucoma determined with archetypal analysis
-
Elze T, Pasquale LR, Shen LQ, et al. Patterns of functional vision loss in glaucoma determined with archetypal analysis. J R Soc Interface 2015;12.
-
(2015)
J R Soc Interface
, pp. 12
-
-
Elze, T.1
Pasquale, L.R.2
Shen, L.Q.3
-
50
-
-
85034986968
-
Reversal of glaucoma hemifield test results and visual field features in glaucoma
-
Wang M, Pasquale LR, Shen LQ, et al. Reversal of glaucoma hemifield test results and visual field features in glaucoma. Ophthalmology 2018;125:352-60.
-
(2018)
Ophthalmology
, vol.125
, pp. 352-360
-
-
Wang, M.1
Pasquale, L.R.2
Shen, L.Q.3
-
51
-
-
78650837170
-
Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression
-
Tanna AP, Bandi JR, Budenz DL, et al. Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression. Ophthalmology 2011;118:60-5.
-
(2011)
Ophthalmology
, vol.118
, pp. 60-65
-
-
Tanna, A.P.1
Bandi, J.R.2
Budenz, D.L.3
-
52
-
-
0037680366
-
Interobserver agreement on visual field progression in glaucoma: A comparison of methods
-
Viswanathan AC, Crabb DP, McNaught AI, et al. Interobserver agreement on visual field progression in glaucoma: a comparison of methods. Br J Ophthalmol 2003;87:726-30.
-
(2003)
Br J Ophthalmol
, vol.87
, pp. 726-730
-
-
Viswanathan, A.C.1
Crabb, D.P.2
McNaught, A.I.3
-
53
-
-
85049312694
-
Detection of longitudinal visual field progression in glaucoma using machine learning
-
Yousefi S, Kiwaki T, Zheng Y, et al. Detection of longitudinal visual field progression in glaucoma using machine learning. Am J Ophthalmol 2018;193:71-9.
-
(2018)
Am J Ophthalmol
, vol.193
, pp. 71-79
-
-
Yousefi, S.1
Kiwaki, T.2
Zheng, Y.3
-
54
-
-
0036269833
-
The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma
-
Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701-13.
-
(2002)
Arch Ophthalmol
, vol.120
, pp. 701-713
-
-
Kass, M.A.1
Heuer, D.K.2
Higginbotham, E.J.3
-
55
-
-
0036822851
-
Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial
-
Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120:1268-79.
-
(2002)
Arch Ophthalmol
, vol.120
, pp. 1268-1279
-
-
Heijl, A.1
Leske, M.C.2
Bengtsson, B.3
-
56
-
-
0032189255
-
Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures
-
Collaborative Normal-Tension Glaucoma Study Group
-
Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 1998;126:487-97.
-
(1998)
Am J Ophthalmol
, vol.126
, pp. 487-497
-
-
-
57
-
-
85035320643
-
Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods
-
Kazemian P, Lavieri MS, Van Oyen MP, et al. Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods. Ophthalmology 2018;125:569-77.
-
(2018)
Ophthalmology
, vol.125
, pp. 569-577
-
-
Kazemian, P.1
Lavieri, M.S.2
Van Oyen, M.P.3
-
58
-
-
0034765810
-
Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery
-
Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001;108:1943-53.
-
(2001)
Ophthalmology
, vol.108
, pp. 1943-1953
-
-
Lichter, P.R.1
Musch, D.C.2
Gillespie, B.W.3
-
59
-
-
85021848910
-
Update on blindness due to retinopathy of prematurity globally and in India
-
Blencowe H, Moxon S, Gilbert C. Update on blindness due to retinopathy of prematurity globally and in India. Indian Pediatr 2016;53(Suppl 2):S89-92.
-
(2016)
Indian Pediatr
, vol.53
, pp. S89-92
-
-
Blencowe, H.1
Moxon, S.2
Gilbert, C.3
-
60
-
-
0026544693
-
Cryotherapy for retinopathy of prematurity-A prospective study
-
Robinson R, O'Keefe M. Cryotherapy for retinopathy of prematurity-a prospective study. Br J Ophthalmol 1992;76:289-91.
-
(1992)
Br J Ophthalmol
, vol.76
, pp. 289-291
-
-
Robinson, R.1
O'Keefe, M.2
-
61
-
-
0034905430
-
Multicenter trial of cryotherapy for retinopathy of prematurity: Ophthalmological outcomes at 10 years
-
Cryotherapy for Retinopathy of Prematurity Cooperative Group
-
Cryotherapy for Retinopathy of Prematurity Cooperative Group. Multicenter trial of cryotherapy for retinopathy of prematurity: ophthalmological outcomes at 10 years. Arch Ophthalmol 2001;119:1110-8.
-
(2001)
Arch Ophthalmol
, vol.119
, pp. 1110-1118
-
-
-
62
-
-
0030914797
-
Retinopathy of prematurity in middle-income countries
-
Gilbert C, Rahi J, Eckstein M, et al. Retinopathy of prematurity in middle-income countries. Lancet 1997;350:12-14.
-
(1997)
Lancet
, vol.350
, pp. 12-14
-
-
Gilbert, C.1
Rahi, J.2
Eckstein, M.3
-
63
-
-
85040314514
-
An international comparison of retinopathy of prematurity grading performance within the Benefits of Oxygen Saturation Targeting II trials
-
Fleck BW, Williams C, Juszczak E, et al. An international comparison of retinopathy of prematurity grading performance within the Benefits of Oxygen Saturation Targeting II trials. Eye 2018;32:74-80.
-
(2018)
Eye
, vol.32
, pp. 74-80
-
-
Fleck, B.W.1
Williams, C.2
Juszczak, E.3
-
64
-
-
85011771031
-
Implementation and evaluation of a teleeducation system for the diagnosis of ophthalmic disease by international trainees
-
Campbell JP, Swan R, Jonas K, et al. Implementation and evaluation of a teleeducation system for the diagnosis of ophthalmic disease by international trainees. AMIA Annu Symp Proc 2015;2015:366-75.
-
(2015)
AMIA Annu Symp Proc
, vol.2015
, pp. 366-375
-
-
Campbell, J.P.1
Swan, R.2
Jonas, K.3
-
65
-
-
84931062683
-
Validated system for centralized grading of retinopathy of prematurity: Telemedicine approaches to evaluating acute-phase retinopathy of prematurity (e-ROP) study
-
Daniel E, Quinn GE, Hildebrand PL, et al. Validated system for centralized grading of retinopathy of prematurity: telemedicine approaches to evaluating acute-phase retinopathy of prematurity (e-ROP) study. JAMA Ophthalmol 2015;133:675-82.
-
(2015)
JAMA Ophthalmol
, vol.133
, pp. 675-682
-
-
Daniel, E.1
Quinn, G.E.2
Hildebrand, P.L.3
-
67
-
-
85060664511
-
-
Proceedings Volume 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications
-
Brown JM, Campbell JP, Beers A. Fully automated disease severity assessment and treatment monitoring in retinopathy of prematurity using deep learning. Proceedings Volume 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 2018.
-
(2018)
Fully Automated Disease Severity Assessment and Treatment Monitoring in Retinopathy of Prematurity Using Deep Learning
-
-
Brown, J.M.1
Campbell, J.P.2
Beers, A.3
-
68
-
-
85043470011
-
Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy
-
Krause J, Gulshan V, Rahimy E, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018;125:1264-72.
-
(2018)
Ophthalmology
, vol.125
, pp. 1264-1272
-
-
Krause, J.1
Gulshan, V.2
Rahimy, E.3
-
70
-
-
85041127026
-
Retinal lesion detection with deep learning using image patches
-
Lam C, Yu C, Huang L, et al. Retinal lesion detection with deep learning using image patches. Invest Ophthalmol Vis Sci 2018;59:590-6.
-
(2018)
Invest Ophthalmol Vis Sci
, vol.59
, pp. 590-596
-
-
Lam, C.1
Yu, C.2
Huang, L.3
-
71
-
-
85019077750
-
Deep image mining for diabetic retinopathy screening
-
Quellec G, Charrière K, Boudi Y, et al. Deep image mining for diabetic retinopathy screening. Med Image Anal 2017;39:178-93.
-
(2017)
Med Image Anal
, vol.39
, pp. 178-193
-
-
Quellec, G.1
Charrière, K.2
Boudi, Y.3
-
72
-
-
85044175953
-
Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: A pilot study
-
Keel S, Lee PY, Scheetz J, et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Sci Rep 2018;8:4330.
-
(2018)
Sci Rep
, vol.8
, pp. 4330
-
-
Keel, S.1
Lee, P.Y.2
Scheetz, J.3
|