메뉴 건너뛰기




Volumn 103, Issue 2, 2019, Pages 167-175

Artificial intelligence and deep learning in ophthalmology

Author keywords

glaucoma; imaging; public health; retina; telemedicine

Indexed keywords

AGE RELATED MACULAR DEGENERATION; ARTIFICIAL INTELLIGENCE; CLINICAL FEATURE; DEEP LEARNING; DIABETIC RETINOPATHY; DISEASE ASSOCIATION; GLAUCOMA; HUMAN; INCIDENCE; OPHTHALMOLOGY; POPULATION RISK; PREVALENCE; PRIORITY JOURNAL; RETROLENTAL FIBROPLASIA; REVIEW; RISK FACTOR; SUBRETINAL NEOVASCULARIZATION; ANIMAL; EYE DISEASE; PROCEDURES;

EID: 85055474664     PISSN: 00071161     EISSN: 14682079     Source Type: Journal    
DOI: 10.1136/bjophthalmol-2018-313173     Document Type: Review
Times cited : (861)

References (72)
  • 1
    • 84962306691 scopus 로고    scopus 로고
    • World Economic Forum (accessed 18 Aug 2018)
    • World Economic Forum, 2016. The fourth industrial revolution: what it means, how to respond. https://www. weforum. org/ agenda/ 2016/ 01/ the-fourth-industrial-revolutionwhat-it-means-and-how-to-respond/ (accessed 18 Aug 2018).
    • (2016) The Fourth Industrial Revolution: What It Means, How to Respond
  • 3
    • 84986325670 scopus 로고    scopus 로고
    • Accelerating very deep convolutional networks for classification and detection
    • Zhang X, Zou J, He K, et al. Accelerating very deep convolutional networks for classification and detection. IEEE Trans Pattern Anal Mach Intell 2016;38:1943-55.
    • (2016) IEEE Trans Pattern Anal Mach Intell , vol.38 , pp. 1943-1955
    • Zhang, X.1    Zou, J.2    He, K.3
  • 4
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computeraided detection: Cnn architectures, dataset characteristics and transfer learning
    • Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computeraided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285-98.
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1285-1298
    • Shin, H.C.1    Roth, H.R.2    Gao, M.3
  • 5
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • Tompson J, Jain A, LeCun Y. Joint training of a convolutional network and a graphical model for human pose estimation. Advances in Neural Information Processing Systems 2014;27:1799-807.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 1799-1807
    • Tompson, J.1    Jain, A.2    LeCun, Y.3
  • 6
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition
    • Hinton G, Deng L, Yu D. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine 2012;29:82-97.
    • (2012) IEEE Signal Processing Magazine , vol.29 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3
  • 7
    • 85025112337 scopus 로고    scopus 로고
    • Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks
    • Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284:574-82.
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2
  • 8
    • 85041456216 scopus 로고    scopus 로고
    • Clinical applicability of deep learning system in detecting tuberculosis with chest radiography
    • Ting DSW, Yi PH, Hui F. Clinical applicability of deep learning system in detecting tuberculosis with chest radiography. Radiology 2018;286:729-31.
    • (2018) Radiology , vol.286 , pp. 729-731
    • Ting, D.S.W.1    Yi, P.H.2    Hui, F.3
  • 9
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 10
    • 85038431889 scopus 로고    scopus 로고
    • Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
    • Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318:2199-210.
    • (2017) JAMA , vol.318 , pp. 2199-2210
    • Ehteshami Bejnordi, B.1    Veta, M.2    Johannes Van Diest, P.3
  • 11
    • 85038438910 scopus 로고    scopus 로고
    • Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
    • Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017;318:2211-23.
    • (2017) JAMA , vol.318 , pp. 2211-2223
    • Ting, D.S.W.1    Cheung, C.Y.2    Lim, G.3
  • 12
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10.
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 13
    • 85023600747 scopus 로고    scopus 로고
    • Deep-learning based, automated segmentation of macular edema in optical coherence tomography
    • Lee CS, Tyring AJ, Deruyter NP, et al. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express 2017;8:3440-8.
    • (2017) Biomed Opt Express , vol.8 , pp. 3440-3448
    • Lee, C.S.1    Tyring, A.J.2    Deruyter, N.P.3
  • 14
    • 84990193991 scopus 로고    scopus 로고
    • Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
    • Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 2016;57:5200-6.
    • (2016) Invest Ophthalmol Vis Sci , vol.57 , pp. 5200-5206
    • Abràmoff, M.D.1    Lou, Y.2    Erginay, A.3
  • 15
    • 85016221341 scopus 로고    scopus 로고
    • Automated identification of diabetic retinopathy using deep learning
    • Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017;124:962-9.
    • (2017) Ophthalmology , vol.124 , pp. 962-969
    • Gargeya, R.1    Leng, T.2
  • 16
    • 85042596911 scopus 로고    scopus 로고
    • Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
    • Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018;125:1199-206.
    • (2018) Ophthalmology , vol.125 , pp. 1199-1206
    • Li, Z.1    He, Y.2    Keel, S.3
  • 17
    • 85034636594 scopus 로고    scopus 로고
    • Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
    • Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol 2017;135:1170-6.
    • (2017) JAMA Ophthalmol , vol.135 , pp. 1170-1176
    • Burlina, P.M.1    Joshi, N.2    Pekala, M.3
  • 18
    • 85045109230 scopus 로고    scopus 로고
    • A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography
    • Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 2018;125:1410-20.
    • (2018) Ophthalmology , vol.125 , pp. 1410-1420
    • Grassmann, F.1    Mengelkamp, J.2    Brandl, C.3
  • 19
    • 85049693038 scopus 로고    scopus 로고
    • Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks
    • Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol 2018;136:803-10.
    • (2018) JAMA Ophthalmol , vol.136 , pp. 803-810
    • Brown, J.M.1    Campbell, J.P.2    Beers, A.3
  • 20
    • 85042201755 scopus 로고    scopus 로고
    • Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
    • Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018;2:158-64.
    • (2018) Nat Biomed Eng , vol.2 , pp. 158-164
    • Poplin, R.1    Varadarajan, A.V.2    Blumer, K.3
  • 21
    • 85048032246 scopus 로고    scopus 로고
    • Deep learning for predicting refractive error from retinal fundus images
    • Varadarajan AV, Poplin R, Blumer K, et al. Deep learning for predicting refractive error from retinal fundus images. Invest Ophthalmol Vis Sci 2018;59:2861-8.
    • (2018) Invest Ophthalmol Vis Sci , vol.59 , pp. 2861-2868
    • Varadarajan, A.V.1    Poplin, R.2    Blumer, K.3
  • 22
    • 84859030420 scopus 로고    scopus 로고
    • Global prevalence and major risk factors of diabetic retinopathy
    • Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35:556-64.
    • (2012) Diabetes Care , vol.35 , pp. 556-564
    • Yau, J.W.1    Rogers, S.L.2    Kawasaki, R.3
  • 23
    • 0033848553 scopus 로고    scopus 로고
    • Effectiveness of screening and monitoring tests for diabetic retinopathy-A systematic review
    • Hutchinson A, McIntosh A, Peters J, et al. Effectiveness of screening and monitoring tests for diabetic retinopathy-a systematic review. Diabet Med 2000;17:495-506.
    • (2000) Diabet Med , vol.17 , pp. 495-506
    • Hutchinson, A.1    McIntosh, A.2    Peters, J.3
  • 24
    • 0038237228 scopus 로고    scopus 로고
    • Comparison of two reference standards in validating two field mydriatic digital photography as a method of screening for diabetic retinopathy
    • Scanlon PH, Malhotra R, Greenwood RH, et al. Comparison of two reference standards in validating two field mydriatic digital photography as a method of screening for diabetic retinopathy. Br J Ophthalmol 2003;87:1258-63.
    • (2003) Br J Ophthalmol , vol.87 , pp. 1258-1263
    • Scanlon, P.H.1    Malhotra, R.2    Greenwood, R.H.3
  • 25
    • 19744375720 scopus 로고    scopus 로고
    • Sustainingremote-area programs: Retinal camera use by Aboriginal health workers and nurses in a Kimberley partnership
    • Murray R, Metcalf SM, Lewis PM. Sustainingremote-area programs: retinal camera use by Aboriginal health workers and nurses in a Kimberley partnership. MedJ Aust 2005;182:520-3.
    • (2005) MedJ Aust , vol.182 , pp. 520-523
    • Murray, R.1    Metcalf, S.M.2    Lewis, P.M.3
  • 26
    • 79961025284 scopus 로고    scopus 로고
    • Retinal video recording a new way to image and diagnose diabetic retinopathy
    • Ting DS, Tay-Kearney ML, Constable I, et al. Retinal video recording a new way to image and diagnose diabetic retinopathy. Ophthalmology 2011;118:1588-93.
    • (2011) Ophthalmology , vol.118 , pp. 1588-1593
    • Ting, D.S.1    Tay-Kearney, M.L.2    Constable, I.3
  • 27
    • 84974782886 scopus 로고    scopus 로고
    • Diabetic retinopathy: Global prevalence, major risk factors, screening practices and public health challenges: A review
    • Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol 2016;44:260-77.
    • (2016) Clin Exp Ophthalmol , vol.44 , pp. 260-277
    • Ting, D.S.1    Cheung, G.C.2    Wong, T.Y.3
  • 28
    • 85095168170 scopus 로고    scopus 로고
    • Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
    • Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018;1:1-8.
    • (2018) NPJ Digit Med , vol.1 , pp. 1-8
  • 29
    • 84940535056 scopus 로고    scopus 로고
    • Effect of omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function: The areds2 randomized clinical trial
    • Chew EY, Clemons TE, Agrón E, et al. Effect of omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function: the areds2 randomized clinical trial. JAMA 2015;314:791-801.
    • (2015) JAMA , vol.314 , pp. 791-801
    • Chew, E.Y.1    Clemons, T.E.2    Agrón, E.3
  • 30
    • 84892965801 scopus 로고    scopus 로고
    • Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and metaanalysis
    • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and metaanalysis. Lancet Glob Health 2014;2:e106-16.
    • (2014) Lancet Glob Health , vol.2 , pp. e106-e116
    • Wong, W.L.1    Su, X.2    Li, X.3
  • 31
    • 85067181070 scopus 로고    scopus 로고
    • Centers for Medicare & Medicaid Services (accessed 4 Sep 2018)
    • Centers for Medicare & Medicaid Services, 2018. CMS medicare provider utilization and payment data. https://www. cms. gov/ Research-Statistics-Data-and-Systems/ Statistics-Trends-and-Reports/ Medicare-Provider-Charge-Data/ index. html (accessed 4 Sep 2018).
    • (2018) CMS Medicare Provider Utilization and Payment Data
  • 32
    • 85027881492 scopus 로고    scopus 로고
    • Deep learning is effective for classifying normal versus age-related macular degeneration OCT images
    • Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol Retina 2017;1:322-7.
    • (2017) Ophthalmol Retina , vol.1 , pp. 322-327
    • Lee, C.S.1    Baughman, D.M.2    Lee, A.Y.3
  • 33
    • 85034588954 scopus 로고    scopus 로고
    • Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning
    • Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol 2018;256:259-65.
    • (2018) Graefes Arch Clin Exp Ophthalmol , vol.256 , pp. 259-265
    • Treder, M.1    Lauermann, J.L.2    Eter, N.3
  • 34
    • 85042389905 scopus 로고    scopus 로고
    • Identifying medical diagnoses and treatable diseases by image-based deep learning
    • Kermany DS, Goldbaum M, Cai W. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172:1122-31.
    • (2018) Cell , vol.172 , pp. 1122-1131
    • Kermany, D.S.1    Goldbaum, M.2    Cai, W.3
  • 35
    • 85046542182 scopus 로고    scopus 로고
    • AI for medical imaging goes deep
    • Ting DSW, Liu Y, Burlina P, et al. AI for medical imaging goes deep. Nat Med 2018;24:539-40.
    • (2018) Nat Med , vol.24 , pp. 539-540
    • Ting, D.S.W.1    Liu, Y.2    Burlina, P.3
  • 37
    • 85026815234 scopus 로고    scopus 로고
    • ReLayNet: Retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks
    • Roy AG, Conjeti S, Karri SPK, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express 2017;8:3627-42.
    • (2017) Biomed Opt Express , vol.8 , pp. 3627-3642
    • Roy, A.G.1    Conjeti, S.2    Karri, S.P.K.3
  • 38
    • 85044925205 scopus 로고    scopus 로고
    • Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography
    • Venhuizen FG, van Ginneken B, Liefers B, et al. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomed Opt Express 2018;9:1545-69.
    • (2018) Biomed Opt Express , vol.9 , pp. 1545-1569
    • Venhuizen, F.G.1    Van Ginneken, B.2    Liefers, B.3
  • 39
    • 85049375346 scopus 로고    scopus 로고
    • Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers
    • Hamwood J, Alonso-Caneiro D, Read SA, et al. Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers. Biomed Opt Express 2018;9:3049-66.
    • (2018) Biomed Opt Express , vol.9 , pp. 3049-3066
    • Hamwood, J.1    Alonso-Caneiro, D.2    Read, S.A.3
  • 40
    • 85019034945 scopus 로고    scopus 로고
    • Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
    • Fang L, Cunefare D, Wang C, et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed Opt Express 2017;8:2732-44.
    • (2017) Biomed Opt Express , vol.8 , pp. 2732-2744
    • Fang, L.1    Cunefare, D.2    Wang, C.3
  • 41
    • 85029811540 scopus 로고    scopus 로고
    • Automated segmentation of the choroid in EDI-OCT images with retinal pathology using convolution neural networks
    • Chen M, Wang J, Oguz I, et al. Automated segmentation of the choroid in EDI-OCT images with retinal pathology using convolution neural networks. Fetal Infant Ophthalmic Med Image Anal 2017;10554:177-84.
    • (2017) Fetal Infant Ophthalmic Med Image Anal , vol.1055 , pp. 177-184
    • Chen, M.1    Wang, J.2    Oguz, I.3
  • 42
    • 84978683018 scopus 로고    scopus 로고
    • Segmentation of the foveal microvasculature using deep learning networks
    • Prentaŝic P, Heisler M, Mammo Z, et al. Segmentation of the foveal microvasculature using deep learning networks. J Biomed Opt 2016;21:75008.
    • (2016) J Biomed Opt , vol.21 , pp. 75008
    • Prentaŝic, P.1    Heisler, M.2    Mammo, Z.3
  • 43
    • 85052522615 scopus 로고    scopus 로고
    • Clinically applicable deep learning for diagnosis and referral in retinal disease
    • De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342-50.
    • (2018) Nat Med , vol.24 , pp. 1342-1350
    • De Fauw, J.1    Ledsam, J.R.2    Romera-Paredes, B.3
  • 44
    • 85033476665 scopus 로고    scopus 로고
    • How to defuse a demographic time bomb: The way forward?
    • Buchan JC, Amoaku W, Barnes B, et al. How to defuse a demographic time bomb: the way forward? Eye 2017;31:1519-22.
    • (2017) Eye , vol.31 , pp. 1519-1522
    • Buchan, J.C.1    Amoaku, W.2    Barnes, B.3
  • 45
    • 85060667393 scopus 로고    scopus 로고
    • 2018. OCT rollout in every specsavers announced. (accessed 4 Sep
    • 2018. OCT rollout in every specsavers announced. https://www. aop. org. uk/ ot/ industry/ high-street/ 2017/ 05/ 22/ oct-rollout-in-every-specsavers-announced (accessed 4 Sep 2018).
    • (2018)
  • 46
    • 84908473395 scopus 로고    scopus 로고
    • Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis
    • Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014;121:2081-90.
    • (2014) Ophthalmology , vol.121 , pp. 2081-2090
    • Tham, Y.C.1    Li, X.2    Wong, T.Y.3
  • 47
    • 0023927705 scopus 로고
    • Size of the optic nerve scleral canal and comparison with intravital determination of optic disc dimensions
    • Jonas JB, Gusek GC, Guggenmoos-Holzmann I, et al. Size of the optic nerve scleral canal and comparison with intravital determination of optic disc dimensions. Graefes Arch Clin Exp Ophthalmol 1988;226:213-5.
    • (1988) Graefes Arch Clin Exp Ophthalmol , vol.226 , pp. 213-215
    • Jonas, J.B.1    Gusek, G.C.2    Guggenmoos-Holzmann, I.3
  • 48
    • 85048054062 scopus 로고    scopus 로고
    • Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression
    • Christopher M, Belghith A, Weinreb RN, et al. Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Invest Ophthalmol Vis Sci 2018;59:2748-56.
    • (2018) Invest Ophthalmol Vis Sci , vol.59 , pp. 2748-2756
    • Christopher, M.1    Belghith, A.2    Weinreb, R.N.3
  • 49
    • 85005926424 scopus 로고    scopus 로고
    • Patterns of functional vision loss in glaucoma determined with archetypal analysis
    • Elze T, Pasquale LR, Shen LQ, et al. Patterns of functional vision loss in glaucoma determined with archetypal analysis. J R Soc Interface 2015;12.
    • (2015) J R Soc Interface , pp. 12
    • Elze, T.1    Pasquale, L.R.2    Shen, L.Q.3
  • 50
    • 85034986968 scopus 로고    scopus 로고
    • Reversal of glaucoma hemifield test results and visual field features in glaucoma
    • Wang M, Pasquale LR, Shen LQ, et al. Reversal of glaucoma hemifield test results and visual field features in glaucoma. Ophthalmology 2018;125:352-60.
    • (2018) Ophthalmology , vol.125 , pp. 352-360
    • Wang, M.1    Pasquale, L.R.2    Shen, L.Q.3
  • 51
    • 78650837170 scopus 로고    scopus 로고
    • Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression
    • Tanna AP, Bandi JR, Budenz DL, et al. Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression. Ophthalmology 2011;118:60-5.
    • (2011) Ophthalmology , vol.118 , pp. 60-65
    • Tanna, A.P.1    Bandi, J.R.2    Budenz, D.L.3
  • 52
    • 0037680366 scopus 로고    scopus 로고
    • Interobserver agreement on visual field progression in glaucoma: A comparison of methods
    • Viswanathan AC, Crabb DP, McNaught AI, et al. Interobserver agreement on visual field progression in glaucoma: a comparison of methods. Br J Ophthalmol 2003;87:726-30.
    • (2003) Br J Ophthalmol , vol.87 , pp. 726-730
    • Viswanathan, A.C.1    Crabb, D.P.2    McNaught, A.I.3
  • 53
    • 85049312694 scopus 로고    scopus 로고
    • Detection of longitudinal visual field progression in glaucoma using machine learning
    • Yousefi S, Kiwaki T, Zheng Y, et al. Detection of longitudinal visual field progression in glaucoma using machine learning. Am J Ophthalmol 2018;193:71-9.
    • (2018) Am J Ophthalmol , vol.193 , pp. 71-79
    • Yousefi, S.1    Kiwaki, T.2    Zheng, Y.3
  • 54
    • 0036269833 scopus 로고    scopus 로고
    • The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma
    • Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701-13.
    • (2002) Arch Ophthalmol , vol.120 , pp. 701-713
    • Kass, M.A.1    Heuer, D.K.2    Higginbotham, E.J.3
  • 55
    • 0036822851 scopus 로고    scopus 로고
    • Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial
    • Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120:1268-79.
    • (2002) Arch Ophthalmol , vol.120 , pp. 1268-1279
    • Heijl, A.1    Leske, M.C.2    Bengtsson, B.3
  • 56
    • 0032189255 scopus 로고    scopus 로고
    • Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures
    • Collaborative Normal-Tension Glaucoma Study Group
    • Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 1998;126:487-97.
    • (1998) Am J Ophthalmol , vol.126 , pp. 487-497
  • 57
    • 85035320643 scopus 로고    scopus 로고
    • Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods
    • Kazemian P, Lavieri MS, Van Oyen MP, et al. Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods. Ophthalmology 2018;125:569-77.
    • (2018) Ophthalmology , vol.125 , pp. 569-577
    • Kazemian, P.1    Lavieri, M.S.2    Van Oyen, M.P.3
  • 58
    • 0034765810 scopus 로고    scopus 로고
    • Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery
    • Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001;108:1943-53.
    • (2001) Ophthalmology , vol.108 , pp. 1943-1953
    • Lichter, P.R.1    Musch, D.C.2    Gillespie, B.W.3
  • 59
    • 85021848910 scopus 로고    scopus 로고
    • Update on blindness due to retinopathy of prematurity globally and in India
    • Blencowe H, Moxon S, Gilbert C. Update on blindness due to retinopathy of prematurity globally and in India. Indian Pediatr 2016;53(Suppl 2):S89-92.
    • (2016) Indian Pediatr , vol.53 , pp. S89-92
    • Blencowe, H.1    Moxon, S.2    Gilbert, C.3
  • 60
    • 0026544693 scopus 로고
    • Cryotherapy for retinopathy of prematurity-A prospective study
    • Robinson R, O'Keefe M. Cryotherapy for retinopathy of prematurity-a prospective study. Br J Ophthalmol 1992;76:289-91.
    • (1992) Br J Ophthalmol , vol.76 , pp. 289-291
    • Robinson, R.1    O'Keefe, M.2
  • 61
    • 0034905430 scopus 로고    scopus 로고
    • Multicenter trial of cryotherapy for retinopathy of prematurity: Ophthalmological outcomes at 10 years
    • Cryotherapy for Retinopathy of Prematurity Cooperative Group
    • Cryotherapy for Retinopathy of Prematurity Cooperative Group. Multicenter trial of cryotherapy for retinopathy of prematurity: ophthalmological outcomes at 10 years. Arch Ophthalmol 2001;119:1110-8.
    • (2001) Arch Ophthalmol , vol.119 , pp. 1110-1118
  • 62
    • 0030914797 scopus 로고    scopus 로고
    • Retinopathy of prematurity in middle-income countries
    • Gilbert C, Rahi J, Eckstein M, et al. Retinopathy of prematurity in middle-income countries. Lancet 1997;350:12-14.
    • (1997) Lancet , vol.350 , pp. 12-14
    • Gilbert, C.1    Rahi, J.2    Eckstein, M.3
  • 63
    • 85040314514 scopus 로고    scopus 로고
    • An international comparison of retinopathy of prematurity grading performance within the Benefits of Oxygen Saturation Targeting II trials
    • Fleck BW, Williams C, Juszczak E, et al. An international comparison of retinopathy of prematurity grading performance within the Benefits of Oxygen Saturation Targeting II trials. Eye 2018;32:74-80.
    • (2018) Eye , vol.32 , pp. 74-80
    • Fleck, B.W.1    Williams, C.2    Juszczak, E.3
  • 64
    • 85011771031 scopus 로고    scopus 로고
    • Implementation and evaluation of a teleeducation system for the diagnosis of ophthalmic disease by international trainees
    • Campbell JP, Swan R, Jonas K, et al. Implementation and evaluation of a teleeducation system for the diagnosis of ophthalmic disease by international trainees. AMIA Annu Symp Proc 2015;2015:366-75.
    • (2015) AMIA Annu Symp Proc , vol.2015 , pp. 366-375
    • Campbell, J.P.1    Swan, R.2    Jonas, K.3
  • 65
    • 84931062683 scopus 로고    scopus 로고
    • Validated system for centralized grading of retinopathy of prematurity: Telemedicine approaches to evaluating acute-phase retinopathy of prematurity (e-ROP) study
    • Daniel E, Quinn GE, Hildebrand PL, et al. Validated system for centralized grading of retinopathy of prematurity: telemedicine approaches to evaluating acute-phase retinopathy of prematurity (e-ROP) study. JAMA Ophthalmol 2015;133:675-82.
    • (2015) JAMA Ophthalmol , vol.133 , pp. 675-682
    • Daniel, E.1    Quinn, G.E.2    Hildebrand, P.L.3
  • 68
    • 85043470011 scopus 로고    scopus 로고
    • Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy
    • Krause J, Gulshan V, Rahimy E, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018;125:1264-72.
    • (2018) Ophthalmology , vol.125 , pp. 1264-1272
    • Krause, J.1    Gulshan, V.2    Rahimy, E.3
  • 70
    • 85041127026 scopus 로고    scopus 로고
    • Retinal lesion detection with deep learning using image patches
    • Lam C, Yu C, Huang L, et al. Retinal lesion detection with deep learning using image patches. Invest Ophthalmol Vis Sci 2018;59:590-6.
    • (2018) Invest Ophthalmol Vis Sci , vol.59 , pp. 590-596
    • Lam, C.1    Yu, C.2    Huang, L.3
  • 71
    • 85019077750 scopus 로고    scopus 로고
    • Deep image mining for diabetic retinopathy screening
    • Quellec G, Charrière K, Boudi Y, et al. Deep image mining for diabetic retinopathy screening. Med Image Anal 2017;39:178-93.
    • (2017) Med Image Anal , vol.39 , pp. 178-193
    • Quellec, G.1    Charrière, K.2    Boudi, Y.3
  • 72
    • 85044175953 scopus 로고    scopus 로고
    • Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: A pilot study
    • Keel S, Lee PY, Scheetz J, et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Sci Rep 2018;8:4330.
    • (2018) Sci Rep , vol.8 , pp. 4330
    • Keel, S.1    Lee, P.Y.2    Scheetz, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.