메뉴 건너뛰기




Volumn 256, Issue 2, 2018, Pages 259-265

Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning

Author keywords

Age related macular degeneration; Deep convolutional neural network; Deep learning; Machine learning; Optical coherence tomography

Indexed keywords

ARTICLE; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; HUMAN; MACHINE LEARNING; MAJOR CLINICAL STUDY; NERVE CELL NETWORK; PRIORITY JOURNAL; SENSITIVITY AND SPECIFICITY; SOFTWARE; SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY; WET MACULAR DEGENERATION; ARTIFICIAL NEURAL NETWORK; OPTICAL COHERENCE TOMOGRAPHY; PATHOLOGY; PROCEDURES; REPRODUCIBILITY; RETINA MACULA LUTEA; VALIDATION STUDY;

EID: 85034588954     PISSN: 0721832X     EISSN: 1435702X     Source Type: Journal    
DOI: 10.1007/s00417-017-3850-3     Document Type: Article
Times cited : (192)

References (31)
  • 4
    • 84858595959 scopus 로고    scopus 로고
    • The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration
    • Regatieri C, Branchini L, Duker J (2011) The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 42 Suppl:S56-66
    • (2011) Ophthalmic Surg Lasers Imaging , vol.42 Suppl , pp. S56-S66
    • Regatieri, C.1    Branchini, L.2    Duker, J.3
  • 5
    • 84901889480 scopus 로고    scopus 로고
    • Characteristic findings of optical coherence tomography in retinal Angiomatous proliferation
    • PID: 24082773
    • Lim E-H, Han J, Kim C, Cho S, Lee T (2013) Characteristic findings of optical coherence tomography in retinal Angiomatous proliferation. Korean J Ophthalmol 27:351–360
    • (2013) Korean J Ophthalmol , vol.27 , pp. 351-360
    • Lim, E.-H.1    Han, J.2    Kim, C.3    Cho, S.4    Lee, T.5
  • 7
    • 84958291921 scopus 로고    scopus 로고
    • TensorFlow: Biology's gateway to deep learning?
    • COI: 1:CAS:528:DC%2BC2sXhtFakt78%3D, PID: 27136685
    • Rampasek L, Goldenberg A (2016) TensorFlow: Biology's gateway to deep learning? Cell systems 2(1):12–14. https://doi.org/10.1016/j.cels.2016.01.009
    • (2016) Cell systems , vol.2 , Issue.1 , pp. 12-14
    • Rampasek, L.1    Goldenberg, A.2
  • 8
    • 85013130699 scopus 로고    scopus 로고
    • Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning
    • PID: 28211015
    • van Ginneken B (2017) Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol 10:23–32
    • (2017) Radiol Phys Technol , vol.10 , pp. 23-32
    • van Ginneken, B.1
  • 10
    • 85016289983 scopus 로고    scopus 로고
    • A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images
    • COI: 1:CAS:528:DC%2BC2sXnt1Cnsrs%3D, PID: 28035657
    • ElTanboly A, Ismail M, Shalaby A, Switala A, El-Baz A, Schaal S, Gimel'farb G, El-Azab M (2017) A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. Med Phys 44:914–923
    • (2017) Med Phys , vol.44 , pp. 914-923
    • ElTanboly, A.1    Ismail, M.2    Shalaby, A.3    Switala, A.4    El-Baz, A.5    Schaal, S.6    Gimel'farb, G.7    El-Azab, M.8
  • 12
    • 84990193991 scopus 로고    scopus 로고
    • Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
    • PID: 27701631
    • Abramoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57:5200–5206
    • (2016) Invest Ophthalmol Vis Sci , vol.57 , pp. 5200-5206
    • Abramoff, M.D.1    Lou, Y.2    Erginay, A.3    Clarida, W.4    Amelon, R.5    Folk, J.C.6    Niemeijer, M.7
  • 13
    • 85012245192 scopus 로고    scopus 로고
    • Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis
    • PID: 28167406
    • Burlina P, Pacheco KD, Joshi N, Freund DE, Bressler NM (2017) Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med 82:80–86
    • (2017) Comput Biol Med , vol.82 , pp. 80-86
    • Burlina, P.1    Pacheco, K.D.2    Joshi, N.3    Freund, D.E.4    Bressler, N.M.5
  • 14
    • 85004025732 scopus 로고    scopus 로고
    • Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images
    • Wang Y, Zhang Y, Yao Z, Zhao R, Zhou F (2017) Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images. Biomed Opt Express 7:4928–4940
    • (2017) Biomed Opt Express , vol.7 , pp. 4928-4940
    • Wang, Y.1    Zhang, Y.2    Yao, Z.3    Zhao, R.4    Zhou, F.5
  • 15
  • 18
    • 85019845983 scopus 로고    scopus 로고
    • A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes
    • PID: 28528295
    • Miri MS, Abramoff MD, Kwon YH, Sonka M, Garvin MK (2017) A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes. Med Image Anal 39:206–217
    • (2017) Med Image Anal , vol.39 , pp. 206-217
    • Miri, M.S.1    Abramoff, M.D.2    Kwon, Y.H.3    Sonka, M.4    Garvin, M.K.5
  • 19
    • 85020164886 scopus 로고    scopus 로고
    • Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images
    • PID: 28592309
    • Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibe D, Meriaudeau F (2017) Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomed Eng Online 16:68
    • (2017) Biomed Eng Online , vol.16 , pp. 68
    • Alsaih, K.1    Lemaitre, G.2    Rastgoo, M.3    Massich, J.4    Sidibe, D.5    Meriaudeau, F.6
  • 21
    • 85029699583 scopus 로고    scopus 로고
    • Predicting macular edema recurrence from Spatio-Temporal signatures in optical coherence tomography images
    • Vogl W, Waldstein S, Gerendas B, Schmidt-Erfurth U, Langs G (2017) Predicting macular edema recurrence from Spatio-Temporal signatures in optical coherence tomography images. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2017.2700213
    • (2017) IEEE Trans Med Imaging
    • Vogl, W.1    Waldstein, S.2    Gerendas, B.3    Schmidt-Erfurth, U.4    Langs, G.5
  • 22
    • 85016094959 scopus 로고    scopus 로고
    • Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context
    • PID: 28663870
    • Montuoro A, Waldstein S, Gerendas B, Schmidt-Erfurth U, Bogunović H (2017) Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomed Opt Express 8:1874–1888
    • (2017) Biomed Opt Express , vol.8 , pp. 1874-1888
    • Montuoro, A.1    Waldstein, S.2    Gerendas, B.3    Schmidt-Erfurth, U.4    Bogunović, H.5
  • 23
    • 85019629418 scopus 로고    scopus 로고
    • Development of machine learning models for diagnosis of glaucoma
    • PID: 28542342
    • Kim S, Cho K, Oh S (2017) Development of machine learning models for diagnosis of glaucoma. PLoS One 12:e0177726
    • (2017) PLoS One , vol.12
    • Kim, S.1    Cho, K.2    Oh, S.3
  • 24
    • 85019181334 scopus 로고    scopus 로고
    • Investigations of severity level measurements for diabetic macular oedema using machine learning algorithms
    • Murugeswari S, Sukanesh R (2017) Investigations of severity level measurements for diabetic macular oedema using machine learning algorithms. Ir J Med Sci. https://doi.org/10.1007/s11845-017-1598-8
    • (2017) Ir J Med Sci
    • Murugeswari, S.1    Sukanesh, R.2
  • 28
    • 85018189116 scopus 로고    scopus 로고
    • TensorFlow (2017) http://www.tensorflow.org/tutorials/image_recognition. TensorFlow. Accessed 26 June 2017
    • (2017) TensorFlow
  • 29
    • 85038555712 scopus 로고    scopus 로고
    • Google Developers (2017) https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#0. Google Developers. Accessed 4 July 2017
    • (2017) Google Developers
  • 31
    • 85025112337 scopus 로고    scopus 로고
    • Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using Convolutional neural networks
    • PID: 28436741
    • Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using Convolutional neural networks. Radiology 284:574–582
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.