-
1
-
-
84879395648
-
Age-related eye diseases and visual impairment among U.S. adults
-
PID: 23790986
-
Chou CF, Cotch MF, Vitale S, Zhang X, Klein R, Friedman DS, Klein BE, Saaddine JB (2013) Age-related eye diseases and visual impairment among U.S. adults. Am J Prev Med 45:29–35
-
(2013)
Am J Prev Med
, vol.45
, pp. 29-35
-
-
Chou, C.F.1
Cotch, M.F.2
Vitale, S.3
Zhang, X.4
Klein, R.5
Friedman, D.S.6
Klein, B.E.7
Saaddine, J.B.8
-
2
-
-
84875757502
-
Clinical classification of age-related macular degeneration
-
PID: 23332590
-
Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR, Beckman Initiative for Macular Research Classification C (2013) Clinical classification of age-related macular degeneration. Ophthalmology 120:844–851
-
(2013)
Beckman Initiative for Macular Research Classification Ophthalmology
, vol.120
, pp. 844-851
-
-
Ferris, F.L.1
Wilkinson, C.P.2
Bird, A.3
Chakravarthy, U.4
Chew, E.5
Csaky, K.6
Sadda, S.R.7
-
3
-
-
0026254046
-
Optical coherence tomography
-
COI: 1:STN:280:DyaK38%2Fms12lsA%3D%3D, PID: 1957169
-
Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, Fujimoto J (1991) Optical coherence tomography. Science 254:1178–1181
-
(1991)
Science
, vol.254
, pp. 1178-1181
-
-
Huang, D.1
Swanson, E.2
Lin, C.3
Schuman, J.4
Stinson, W.5
Chang, W.6
Hee, M.7
Flotte, T.8
Gregory, K.9
Puliafito, C.10
Fujimoto, J.11
-
4
-
-
84858595959
-
The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration
-
Regatieri C, Branchini L, Duker J (2011) The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 42 Suppl:S56-66
-
(2011)
Ophthalmic Surg Lasers Imaging
, vol.42 Suppl
, pp. S56-S66
-
-
Regatieri, C.1
Branchini, L.2
Duker, J.3
-
5
-
-
84901889480
-
Characteristic findings of optical coherence tomography in retinal Angiomatous proliferation
-
PID: 24082773
-
Lim E-H, Han J, Kim C, Cho S, Lee T (2013) Characteristic findings of optical coherence tomography in retinal Angiomatous proliferation. Korean J Ophthalmol 27:351–360
-
(2013)
Korean J Ophthalmol
, vol.27
, pp. 351-360
-
-
Lim, E.-H.1
Han, J.2
Kim, C.3
Cho, S.4
Lee, T.5
-
6
-
-
85026299858
-
-
Surv Ophthalmol
-
Cicinelli MV, Rabiolo A, Sacconi R, Carnevali A, Querques L, Bandello F, Querques G (2017) Optical coherence tomography angiography in dry age-related macular degeneration. Surv Ophthalmol. https://doi.org/10.1016/j.survophthal.2017.06.005
-
(2017)
Optical coherence tomography angiography in dry age-related macular degeneration
-
-
Cicinelli, M.V.1
Rabiolo, A.2
Sacconi, R.3
Carnevali, A.4
Querques, L.5
Bandello, F.6
Querques, G.7
-
7
-
-
84958291921
-
TensorFlow: Biology's gateway to deep learning?
-
COI: 1:CAS:528:DC%2BC2sXhtFakt78%3D, PID: 27136685
-
Rampasek L, Goldenberg A (2016) TensorFlow: Biology's gateway to deep learning? Cell systems 2(1):12–14. https://doi.org/10.1016/j.cels.2016.01.009
-
(2016)
Cell systems
, vol.2
, Issue.1
, pp. 12-14
-
-
Rampasek, L.1
Goldenberg, A.2
-
8
-
-
85013130699
-
Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning
-
PID: 28211015
-
van Ginneken B (2017) Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol 10:23–32
-
(2017)
Radiol Phys Technol
, vol.10
, pp. 23-32
-
-
van Ginneken, B.1
-
9
-
-
85024379161
-
Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach
-
PID: 28660277
-
Bogunovic H, Waldstein S, Schlegl T, Langs G, Sadeghipour A, Liu X, Gerendas B, Osborne A, Schmidt-Erfurth U (2017) Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach. Invest Ophthalmol Vis Sci 58:3240–4248
-
(2017)
Invest Ophthalmol Vis Sci
, vol.58
, pp. 3240-4248
-
-
Bogunovic, H.1
Waldstein, S.2
Schlegl, T.3
Langs, G.4
Sadeghipour, A.5
Liu, X.6
Gerendas, B.7
Osborne, A.8
Schmidt-Erfurth, U.9
-
10
-
-
85016289983
-
A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images
-
COI: 1:CAS:528:DC%2BC2sXnt1Cnsrs%3D, PID: 28035657
-
ElTanboly A, Ismail M, Shalaby A, Switala A, El-Baz A, Schaal S, Gimel'farb G, El-Azab M (2017) A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. Med Phys 44:914–923
-
(2017)
Med Phys
, vol.44
, pp. 914-923
-
-
ElTanboly, A.1
Ismail, M.2
Shalaby, A.3
Switala, A.4
El-Baz, A.5
Schaal, S.6
Gimel'farb, G.7
El-Azab, M.8
-
11
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
PID: 27898976
-
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
Stumpe, M.C.4
Wu, D.5
Narayanaswamy, A.6
Venugopalan, S.7
Widner, K.8
Madams, T.9
Cuadros, J.10
Kim, R.11
Raman, R.12
Nelson, P.C.13
Mega, J.L.14
Webster, D.R.15
-
12
-
-
84990193991
-
Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
-
PID: 27701631
-
Abramoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57:5200–5206
-
(2016)
Invest Ophthalmol Vis Sci
, vol.57
, pp. 5200-5206
-
-
Abramoff, M.D.1
Lou, Y.2
Erginay, A.3
Clarida, W.4
Amelon, R.5
Folk, J.C.6
Niemeijer, M.7
-
13
-
-
85012245192
-
Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis
-
PID: 28167406
-
Burlina P, Pacheco KD, Joshi N, Freund DE, Bressler NM (2017) Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med 82:80–86
-
(2017)
Comput Biol Med
, vol.82
, pp. 80-86
-
-
Burlina, P.1
Pacheco, K.D.2
Joshi, N.3
Freund, D.E.4
Bressler, N.M.5
-
14
-
-
85004025732
-
Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images
-
Wang Y, Zhang Y, Yao Z, Zhao R, Zhou F (2017) Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images. Biomed Opt Express 7:4928–4940
-
(2017)
Biomed Opt Express
, vol.7
, pp. 4928-4940
-
-
Wang, Y.1
Zhang, Y.2
Yao, Z.3
Zhao, R.4
Zhou, F.5
-
15
-
-
85008949749
-
Choriocapillaris evaluation in choroideremia using optical coherence tomography angiography
-
PID: 28101400
-
Gao S, Patel R, Jain N, Zhang M, Weleber R, Huang D, Pennesi M, Jia Y (2016) Choriocapillaris evaluation in choroideremia using optical coherence tomography angiography. Biomed Opt Express 8:48–56
-
(2016)
Biomed Opt Express
, vol.8
, pp. 48-56
-
-
Gao, S.1
Patel, R.2
Jain, N.3
Zhang, M.4
Weleber, R.5
Huang, D.6
Pennesi, M.7
Jia, Y.8
-
16
-
-
85019024523
-
-
Vis Res
-
Gerendas BS, Bogunovic H, Sadeghipour A, Schlegl T, Langs G, Waldstein SM, Schmidt-Erfurth U (2017) Computational image analysis for prognosis determination in DME. Vis Res. https://doi.org/10.1016/j.visres.2017.03.008
-
(2017)
Computational image analysis for prognosis determination in DME
-
-
Gerendas, B.S.1
Bogunovic, H.2
Sadeghipour, A.3
Schlegl, T.4
Langs, G.5
Waldstein, S.M.6
Schmidt-Erfurth, U.7
-
17
-
-
85018351346
-
Automated staging of age-related macular degeneration using optical coherence tomography
-
PID: 28437528
-
Venhuizen F, van Ginneken B, van Asten F, van Grinsven M, Fauser S, Hoyng C, Theelen T, Sánchez C (2017) Automated staging of age-related macular degeneration using optical coherence tomography. Invest Ophthalmol Vis Sci 58:2318–2328
-
(2017)
Invest Ophthalmol Vis Sci
, vol.58
, pp. 2318-2328
-
-
Venhuizen, F.1
van Ginneken, B.2
van Asten, F.3
van Grinsven, M.4
Fauser, S.5
Hoyng, C.6
Theelen, T.7
Sánchez, C.8
-
18
-
-
85019845983
-
A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes
-
PID: 28528295
-
Miri MS, Abramoff MD, Kwon YH, Sonka M, Garvin MK (2017) A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes. Med Image Anal 39:206–217
-
(2017)
Med Image Anal
, vol.39
, pp. 206-217
-
-
Miri, M.S.1
Abramoff, M.D.2
Kwon, Y.H.3
Sonka, M.4
Garvin, M.K.5
-
19
-
-
85020164886
-
Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images
-
PID: 28592309
-
Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibe D, Meriaudeau F (2017) Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomed Eng Online 16:68
-
(2017)
Biomed Eng Online
, vol.16
, pp. 68
-
-
Alsaih, K.1
Lemaitre, G.2
Rastgoo, M.3
Massich, J.4
Sidibe, D.5
Meriaudeau, F.6
-
20
-
-
85020401396
-
Evaluating the impact of vitreomacular adhesion on anti-VEGF therapy for retinal vein occlusion using machine learning
-
PID: 28592811
-
Waldstein SM, Montuoro A, Podkowinski D, Philip AM, Gerendas BS, Bogunovic H, Schmidt-Erfurth U (2017) Evaluating the impact of vitreomacular adhesion on anti-VEGF therapy for retinal vein occlusion using machine learning. Sci Rep 7:2928
-
(2017)
Sci Rep
, vol.7
, pp. 2928
-
-
Waldstein, S.M.1
Montuoro, A.2
Podkowinski, D.3
Philip, A.M.4
Gerendas, B.S.5
Bogunovic, H.6
Schmidt-Erfurth, U.7
-
21
-
-
85029699583
-
Predicting macular edema recurrence from Spatio-Temporal signatures in optical coherence tomography images
-
Vogl W, Waldstein S, Gerendas B, Schmidt-Erfurth U, Langs G (2017) Predicting macular edema recurrence from Spatio-Temporal signatures in optical coherence tomography images. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2017.2700213
-
(2017)
IEEE Trans Med Imaging
-
-
Vogl, W.1
Waldstein, S.2
Gerendas, B.3
Schmidt-Erfurth, U.4
Langs, G.5
-
22
-
-
85016094959
-
Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context
-
PID: 28663870
-
Montuoro A, Waldstein S, Gerendas B, Schmidt-Erfurth U, Bogunović H (2017) Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomed Opt Express 8:1874–1888
-
(2017)
Biomed Opt Express
, vol.8
, pp. 1874-1888
-
-
Montuoro, A.1
Waldstein, S.2
Gerendas, B.3
Schmidt-Erfurth, U.4
Bogunović, H.5
-
23
-
-
85019629418
-
Development of machine learning models for diagnosis of glaucoma
-
PID: 28542342
-
Kim S, Cho K, Oh S (2017) Development of machine learning models for diagnosis of glaucoma. PLoS One 12:e0177726
-
(2017)
PLoS One
, vol.12
-
-
Kim, S.1
Cho, K.2
Oh, S.3
-
24
-
-
85019181334
-
Investigations of severity level measurements for diabetic macular oedema using machine learning algorithms
-
Murugeswari S, Sukanesh R (2017) Investigations of severity level measurements for diabetic macular oedema using machine learning algorithms. Ir J Med Sci. https://doi.org/10.1007/s11845-017-1598-8
-
(2017)
Ir J Med Sci
-
-
Murugeswari, S.1
Sukanesh, R.2
-
25
-
-
85041295744
-
-
TensorFlow, Large-scale machine learning on heterogeneous distributed systems. TensorFlow, Accessed 4 June 2017
-
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane′ D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Vie′ gas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous distributed systems. TensorFlow. https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf. Accessed 4 June 2017
-
(2015)
Vie′ gas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.16
Jozefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Mane, D.21
Monga, R.22
Moore, S.23
Murray, D.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.31
Vanhoucke, V.32
Vasudevan, V.33
more..
-
27
-
-
85198028989
-
ImageNet- a large-scale hierarchical image database
-
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet- a large-scale hierarchical image database. CVPR 2009 - IEEE Conf Comput Vis Pattern Recognit 2009:248–255
-
(2009)
CVPR 2009 - IEEE Conf Comput Vis Pattern Recognit
, vol.2009
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
28
-
-
85018189116
-
-
TensorFlow (2017) http://www.tensorflow.org/tutorials/image_recognition. TensorFlow. Accessed 26 June 2017
-
(2017)
TensorFlow
-
-
-
29
-
-
85038555712
-
-
Google Developers (2017) https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#0. Google Developers. Accessed 4 July 2017
-
(2017)
Google Developers
-
-
-
31
-
-
85025112337
-
Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using Convolutional neural networks
-
PID: 28436741
-
Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using Convolutional neural networks. Radiology 284:574–582
-
(2017)
Radiology
, vol.284
, pp. 574-582
-
-
Lakhani, P.1
Sundaram, B.2
|